Excitation energy transfer between Eu³⁺ and Tm³⁺ ions in zinc phosphate glass

B C Joshi & Charu Ch Dhondiyal

Department of Physics, Kumaun University, Almora Campus, Almora (Uttaranchal)

Received 14 July 2005; accepted 3 October 2005

Non-radiative energy transfer from Eu^{3+} to Tm^{3+} has been studied by observing the steady state emission of Eu^{3+} with varying concentration of Tm^{3+} in zinc phosphate glass. It has been observed that Eu^{3+} ion emission intensity decreases with increasing Tm^{3+} concentration resulting in a non-radiative energy transfer from Eu^{3+} to Tm^{3+} whereas energy transfer from Tm^{3+} to Tm^{3+} was not observed between donor and acceptor ions. This energy transfer has been explained on the basis of cross-relaxation of energy. The energy transfer mechanism and other parameters related to energy transfer between Tm^{3+} and Tm^{3+} have been computed.

Keywords: Excitation energy, Non-radiative energy transfer, Phosphate glass, Fluorescent spectra

IPC Code:G01J3/30

1 Introduction

Trivalent thulium ion can be used as a potential laser in some of its transitions. Besides others one most important transition of Tm^{3+} is ${}^3F_4 \rightarrow {}^3H_6$. Though the 3H_6 level is the ground level of Tm^{3+} , nevertheless, it can be used in continuous wave laser operations at low temperature and pulsed at room temperature¹. Instead of directly pumping the 3F_4 level of Tm^{3+} , it is advantageous to pump it indirectly via non-radiative energy transfer from some sensitizer ion

Riesfeld *et al.*² have studied/observed non-radiative energy transfer between Tm³⁺ and Er³⁺ ions in phosphate and borate glasses and their results show a mutual migration of energy between Tm³⁺ and Er³⁺ ions. Joshi *et al.*³ have observed a non-radiative energy transfer from Tm³⁺ to Nd³⁺ and Ho³⁺ in phosphate glass. Keeping the above results in mind, we have taken Eu-Tm system for energy transfer study.

2 Experimental Details

Sodium dihydrogen phosphate 2-hydrate (NaH₂PO₄.2H₂O) and zinc oxide (ZnO), both of reagent grades, were used in a proportion of 3:1 by weight to prepare glass matrix. Europium oxide (Eu₂O₃, 99.99%) and thulium oxide (Tm₂O₃, 99.9%) obtained from Indian Rare Earths Limited, Kerala, were used as dopants. Preparations of samples are described elsewhere⁴.

Emission spectra were taken by steady state excitation of the samples with the 365 nm group of

mercury lines obtained from a medium pressure mercury lamp having woods filter. A grating monochromator dispersion 3.3 nm mm⁻¹, Czerny turner mounting, with a photomultiplier tube RCA1P21 connected either to a current meter (least count 1×10^{-9} A) or to a chart recorder⁵ were used to scan the spectra at room temperature (20°C).

3 Results and Discussion

The emission spectra of Tm^{3+} (1wt%) and Eu^{3+} (1wt%) in zinc phosphate glass are shown in Fig. 1. The two peaks in Tm^{3+} spectrum arise due to the transitions $^1D_2 \rightarrow ^3H_4$ (454 nm) and $^1G_4 \rightarrow ^3H_6$ (475 nm) and those in Eu^{3+} emission arise due to $^5D_0 \rightarrow ^7F_1$ (590 nm) and $^5D_0 \rightarrow ^7F_2$ (617 nm) transitions.

The fluorescent spectra (uncorrected) of Tm³⁺ and Eu³⁺ shown in Fig. 2 indicate that these ions are in trivalent state in zinc phosphate glass matrix⁶. The energy level diagram of these trivalent ions are shown in Fig. 3. The incident radiation (365 nm group of mercury lines) excites both types of ions to 27.39×10^3 cm⁻¹ energy. The Eu³⁺ ions rapidly depopulate to ⁵D₀ level, where from emission is obtained via ${}^5D_0 \rightarrow {}^7F_1$ (590 nm) and ${}^5D_0 \rightarrow {}^7F_2$ (617 nm) transitions. The Tm³⁺ ions give emission via $^{1}D_{2} \rightarrow ^{3}H_{4}$ (454 nm) and $^{1}G_{4} \rightarrow ^{3}H_{6}$ (475 nm) transitions. Keeping Eu³⁺ ion concentration fixed and varying Tm³⁺ ion concentration results in a decrease in Eu³⁺ emission as shown in Fig. 2A. On the other hand, keeping Tm³⁺ ion concentration fixed and varying Eu³⁺ ion concentration, shows no change in Tm³⁺

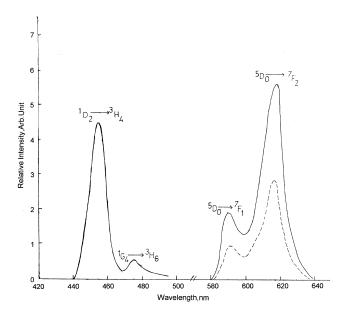


Fig. 1— Emission spectra (uncorrected) of (A) $Tm^{3+}(1.0 \text{ wt. }\%)$ (B) $Eu^{3+}(1.0 \text{ wt\%})$ and (C) $Tm^{3+}(1.0 \text{ wt. }\%) + Eu^{3+}(1.0 \text{ wt\%})$

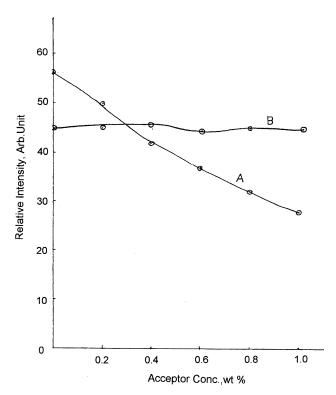


Fig. 2 — Emission intensity of $Eu^{3+}(1.0 \text{ wt \%})$ in the presence of varying concentrations of Tm^{3+} (A) $Tm^{3+}(1.0 \text{ wt \%})$ in the presence of varying concentrations of $Eu^{3+}(B)$

emission (violet blue emission) as shown in Fig. 2B. These observations clearly show that only in the former case the energy transfer is taking place. The overall decrease in Eu³⁺ emission, i.e. for all

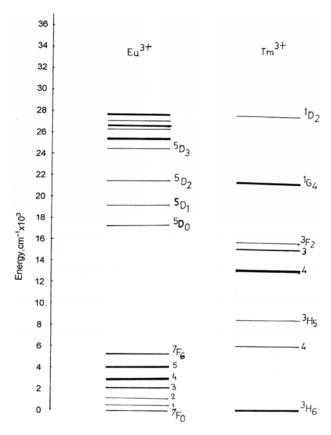


Fig. 3— Energy level diagrams of Eu³⁺ and Tm³⁺

transitions originating from ⁵D₀ level of Eu³⁺, suggest that the energy transfer is non-radiative 12. Careful observation of energy level diagram of Eu³⁺ and Tm³⁺ in Fig. 3 shows that there is no energy level of Tm³⁺ in energy equal to the 5D_0 level of Eu $^{3+}$. Moreover, the 3F_2 level of Tm^{3+} is more than 2500 cm $^{-1}$ below the ⁵D₀ level of Eu³⁺ hence phonon assisted energy transfer is less possible⁷. Therefore, we suggest that the only way of energy transfer from Eu³⁺ to Tm³⁺ is the ion pair resonance or cross-relaxation. This can be explained as follows. The Eu³⁺ and Tm³⁺ are randomly distributed in the glass matrix. Suppose the Eu³⁺ ion after de-excitation from higher levels come to the luminescent ⁵D₀ level and a nearby Tm³⁺ ion is in its ground state ³H₆. As the energy gap between ⁵D₀ and ⁷F₆ level of Eu³⁺ matches the energy difference between ${}^{3}F_{4}$ and ${}^{3}H_{6}$ level of Tm³⁺, this may cause the energy transfer from ⁵D₀ level of Eu³⁺ to ³F₄ level of Tm³⁺. This may be written symbolically as Eu³⁺ (⁵ D₀ \rightarrow ⁷F₆)-Tm³⁺ (³H₆ \rightarrow ³F₄). This is plausible, since the decay time of the metastable state ${}^{5}D_{0}$ of Eu³⁺ is large (2.2 ms) in comparison with the decay time $^{1}\tau_{d}$ of $^{3}F_{4}$ level of Tm³⁺ (0.86 ms). Peterson and Bridenbaugh⁸ also interpreted their experimental data of energy

transfer by cross-relaxation of energy. They suggested that such processes become appreciable if energy is leaving the long-lived metastable state. van Uitert *et al.*⁹ interpreted their result of self-quenching of Sm³⁺ by cross-relaxation of energy. Reisfeld *et al.*² also used this process to explain their result of energy transfer in Tm-Er system. Back transfer of energy from ³F₄ level of Tm³⁺ to ⁵D₀ level of Eu³⁺ is hardly possible as the decay time of ³F₄ level is very small compared with that of ⁵D₀ level.

In the present work, the average donor acceptor distance along with energy transfer probabilities and transfer efficiencies are presented in Table 1. The average separation between donor (Eu³⁺) and acceptor (Tm³⁺) ions varies between 2.37 nm and 1.91 nm (Table 1) which is in the range of electric dipoledipole interaction between donor and acceptor in accordance with Forster's 10 and Dexter's 11 theories of multipolar interactions. This is further corroborated by the graph shown in Fig. 4, between energy transfer probabilities (P_{da}) and square of the concentrations (donor + acceptor) which gives a straight line¹². The critical transfer distance (R_0) , at which the energy transfer probability is equal to the radiative transition probability, in our system is 1.91 nm. This value can be compared with those obtained by Eyal et al. 13 R₀=2.1 nm in Mn-Tm system in metal fluoride glass and by Joshi et al.14 2.50 nm in Sm-UO2++ system in zinc phosphate glass for electric dipole-dipole interactions.

In the present study, the energy transfer by exchange mechanism is not possible which needs a donor-acceptor ion separation of about 0.3-0.4 nm with considerable overlap of wavefunctions. Also, radiative energy transfer between Eu-Tm system is ruled out as no particular wavelength emission of Eu

Table 1— Energy transfer efficiencies and probabilities between donor (Eu^{3+}) and acceptor (Tm^{3+})

$C_{ m donor}$	$C_{ m acceptor}$	$D_{ ext{D-A}}$	$I_{ m di}$	η	$P_{\rm da} \times 10^1$
(wt%)	(wt%)	(nm,±0.1)	(±1)	(±0.05)	(S ⁻¹ ±0.05)
1.0	0.0	2.37	$56(I_{do})$	_	_
	0.2	2.24	50	0.11	5.45
	0.4	2.13	42	0.25	15.15
	0.6	2.05	37	0.34	23.34
	0.8	1.97	32	0.43	34.09
	1.0	1.91	28	0.50	45.45

where $C_{
m donor}$, donor concentration; $C_{
m acceptor}$, acceptor concentration; $D_{
m D-A}$, average donor-acceptor distance; $I_{
m di}$, donor intensity in presence of acceptor; $I_{
m do}$, donor intensity inthe absence of acceptor; η , energy transfer efficiency = $(1-I_{
m di}/I_{
m do})$; $P_{
m da}$, energy transfer probability = $1/\tau_{
m d}(I_{
m do}/I_{
m di}-1)$.

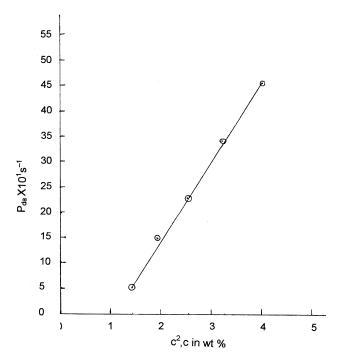


Fig. 4—Variation of energy transfer probability ($P_{\rm da}$) with square of donor + acceptor concentration

or Tm is absorbed by either of the ions in visible region of spectra.

4 Conclusion

Non-radiative energy transfer from Eu³⁺ to Tm³⁺ occurs in zinc phosphate glass. The emission intensity of ³F₂ to ³H₄ transition of Tm³⁺ can be enhanced by the energy transfer, which can be used as a laser material.

References

- 1 Caird a John, *Rare earth laser engineering programme* (part1) U S Govt. (1973) pp50.
- 2 Reisfeld R & Eckstein Y, J Non-cryst Solids, 11 (1973) 261.
- 3 Joshi B C & Lohani R, *Ibid*, 215 (1997) 103.
- 4 Lohani R., Ph D Thesis, Kumaun University; Nainital, India 2000.
- 5 Joshi B C, Lohani R & Pandey Bimal, *Indian J Pure & Appl Phys*, 39 (2001) 443.
- 6 Dieke G H, Spectra & energy levels of rare earth ions in crystals (Wiley, New York), 1968.
- 7 Miyakawa T & Dexter D L, *Phys Rev B*, 1 (1970) 2961.
- 8 Peterson G E & Bridenbaugh P M, J Opt Soc Am, 53 (1963) 1129.
- 9 Uitert van L G & Johnson L F, J Chem Phys, 44 (1966) 3514.
- 10 Forster Th, Ann Phys, 2 (1948) 55.
- 11 Dexter D L, J Chem Phys, 21 (1953) 836.
- 12 Fong F K & Diestler D J, J Chem Phys, 56 (1972) 2875.
- 13 Eyal M, Riesfeld R, Aschiller, Jacoboni C & Jorgenson C K, Chem Phys Lett, 140 (1987) 595.
- 14 Joshi B C, Lohani R & Pandey Bimal, J Non-cryst Solids, 337 (2004) 97.