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Present paper intends to provide a detailed description of a new bio-inspired Metaheuristic Algorithm. Based on the 

detailed study of the Drosophila, the flowchart behaviour for the algorithm, code implementation, methodologies and 

simulation analysis, a novel Fly Optimization Algorithm (FOA) approach is presented. The optimal simulation parameters 

can be used for the real application. FOA is suitable for applications that need a small number of agents; in the range of 8 to 

24 only. The objective of the simulation is to understand the effect of the algorithm parameter on searching pattern strategy, 

as well as the possibility and the effectiveness of the proposed technique for the Swarm of mini Autonomous Surface 

Vehicles’ (ASVs) application. 
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Introduction 

The term "meta-heuristic” was suggested by Fred 

Glover
1
. Metaheuristics is a top-level general strategy 

which guides other heuristics to search for feasible 

solutions in domains where the task is hard and 

difficult. Generally, it is applied to problems classified 

as NP-Hard or NP-Complete according to the theory of 

computational complexity. However, it could also be 

applied to other combinatorial optimization problems 

for which it is known that a polynomial-time solution 

exists but is not practical. Metaheuristics is one of the 

best methods available for “good enough/fast 

enough/cheap enough” solutions. Some examples of 

animal inspired metaheuristics
2
 adopted are the Ant 

Colony Optimization (ACO)
3
, Particle Swarm 

Optimization (PSO)
4
, Monkey Search

5
, Bee Algorithm 

(BA)
6
, Firefly algorithm (FA)

7
, and Artificial Bee 

Colony Algorithm (ABC)
8
. Animals live in harmony 

and help to sustain the environment’s lifecycle. 

Without human intervention, these creatures carry out 

their ‘spontaneous routine’ jobs and contribute towards 

balance in nature. Although their brains are very small 

compared with the size of the human brain, amazingly, 

the ways in which they arrive at a certain decision are 

very impressive and intriguing, at times surpassing that 

of a human being. 

Unlike the Multi-Autonomous Ariel Vehicles 

trajectory planning using Ant Colony Optimization 

(ACO)
9
 approaches, our project objective is mainly to 

perform contour mapping of lakes
10-11

 and ultimately 

determine the deepest location within the vicinity of 

the lake in a short period of time, through the use of 

16 agents or populations. When compared with 

classical benchmark functions, it was found that the 

existing algorithms needed numerous numbers of 

agents (population of n>30) when deployed in real 

world applications
12

. On the other hand, observing the 

fruit fly and its foraging pattern provides as an 

interesting alternative. Though small in size, the 

intelligence that they exhibit, while searching for food 

and mates, may be adopted in finding an optimal path. 

The most important factor is that they normally move 

in a small number. Therefore, here we propose the 

“Fruit Fly” as agents and their searching patterns as 

an alternative algorithm
13

. Some classical benchmark 

functions have been used to verify this finding
12

. 

Present study is organized as follows: Section 2 

will review the biological background of the fruit flies 

while foraging and mating; Sections 3 and 4 will 

explain their behaviour modeling and algorithm 

implementation; Sections 5 and 6 will give the 

experimental results and discussion analysis while 
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Sections 7 and 8 will provide an overview of the field 

testing implementation and the conclusions derived. 
 

Biological Background 
Current trends in research development are 

focusing more on the Drosophila Melanogaster 

(scientific name for the fruit fly) species
14-16

. 

Therefore, the initial ground work in this study has 

also singled out and focused on this particular specie. 

Individual flies vary in body length from 1 to over 

20mm (Fig. 1). The females of most species insert 

their eggs in living, healthy plant tissues. The larvae 

live and feed in the stalks, leaves, fruits, flower heads, 

or seeds
17

. It would be almost impossible to list out 

the number of investigations associated with 

Drosophila’s family tree. Originally, work involving 

studies on the fruit fly was confined to the field of 

genetics; for example, leading to findings that were 

related to proteins and the study of genetic 

inheritance
18

. More recently, work involving their 

study has evolved and is used mostly in 

developmental biology, neural development, 

locomotion, and even in ‘NASA space’
19

. 

The main idea behind this algorithm (Fig. 2) is 

based upon the fruit fly’s biological behavior: 1) The 

fly hunts for food and a mate within duration of one to 

two months lifespan, 2) It moves randomly with Lévy 

flight motion
16,20-22

 3) It smells the potential location 

(attractiveness), 4) It would then taste. If it is not to its 

liking (fitness/profitability), it rejects and goes to 

another location. To the fly, attractiveness is not 

necessarily profitable
23

. 5) While foraging our mating, 

the fly also sends and receives messages with its 

friends about its food and their mates
14-15,24-25

. The 

main steps of the fly behaviour algorithm are given as 

in the flowchart of Fig. 2. When a fly decides to go 

for hunting, it will fly randomly (with Lévy flight 

motion) to find the location guided by a particular 

odor. While searching, the fly also sends and receives 

information from its neighbours and makes 

comparison about the best current location and 

fitness. If a fly has found its favourable spot, it will 

then identify the fitness by taste. If the location no 

longer exists or the taste is ‘bitter’, the fly will go off 

searching again. The fly will stay around at the most 

profitable area, sending, receiving and comparing 

information at the same time. The total number of 

flies depends upon the number of sources. However, 

since most of the flies are near to the food source 

location, the next generation of flies is considered to 

be already close by to the potential food location. 

The Fly Optimization Algorithm (FOA) is a new 

animal-inspired algorithm based on Drosophila, a 

specie of fruit fly. Many algorithms have been 

 
 

Fig. 1The Fruit Fly 
 

 
 

Fig. 2The flowchart of fruit fly behavior while searching. 
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developed with each algorithm having its own 

advantages and disadvantages. FOA is developed with 

a different purpose; emphasizing not only on the 

swarming behaviour itself but also on the application 

involved. Thus, we are also considering whether a 

real agent can achieve the particular optimization 

movement or not. Although the development phase of 

the algorithm is still undergoing, the basic technical 

principle has been largely formed. Further 

developments will focus on the effect of the identified 

parameters on the results achieved. 

 
Code Implementation 

In contrast to the other existing algorithms, the fly 

algorithm will compute the best surrounding direction 

before moving towards that direction. Similar to the 

other algorithms such as the Bee Algorithm
12

, 

shrinking is ultimately important in this algorithm. 

Currently, this new algorithm is focused upon 

examining the best shrinking method. Although this 

algorithm is mainly based upon gradient information, 

randomization is imposed in order to solve the local 

optimum problem. Its capability to solve problem 

with multiple peaks will also be harnessed.  

As the purpose of this algorithm is mainly for 

swarming robotics, this study focuses on the 

possibility of real swarming with the utilization of 

sensors. The existing algorithm concentrates purely 

on fast varying motions that can be performed by the 

organism or applied to the nature of particles
12.

 

Although FOA is still based on the motion of the fly, 

it has also introduced features that can actually be 

performed by slow varying agents such as an 

autonomous surface vehicle (ASV). A real agent will 

collect data along the path. In our case, it is 

considered as a crucial point and must be taken into 

consideration. Thus, this algorithm is based on the 

scenario where a fly is actually collecting data in its 

path and it changes directions according to stochastic 

conditions. Thus, under real circumstances, each 

agent would be able to investigate each peak in a 

particular confined area. The searching process also 

can be described in the form of pseudo code as below: 
 

• Initialization using Lévy Flight motion 

• Choosing the best location 

• While (terminating condition is not met) 

• Examine surrounding points and identify best 

heading direction (find location attractiveness, 

simply smelling) 

• Examine points on that direction with different 

distance (go to location found). In this 

algorithm, this is known as shooting process 

• Select the best point to be next reference point 

and loop again 

• Terminate while location is in range 
 

FOA process begins with initialization by using 

Lévy Flight motion. Each fly will dispatch and find its 

own current best location. In the mean time, each fly 

also “smells” if there is any other source of food 

better than the points it visited and eventually 

examining the best heading direction for the next 

iteration process. Like the “fruit flies”, they share 

information among them and stop at the location 

where the targeted location is considered as the most 

profitable among them. The detailed implementation 

of this pseudo code is described in the next section. 

The surrounding of the known best points is then 

explored. Based on simulation process, in order to 

yield sensible results, the smelling process must 

involve 10 flies or more. A circle with a small radius 

is set around the best known point (Fig. 3). The flies 

are distributed on the perimeter of the circle at certain 

angles. The best direction will then be chosen. This is 

the basic idea of the smelling algorithm. After 

selecting the best direction, a tracking process can be 

conducted along the direction that is selected. Instead 

 
 

Fig. 3The Shooting Process 
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of having the varying angles as in the smelling process, 

the tracking process will have its radius varying from 

the known best point for the flies involved. The point 

which is the best and better than the known best point 

will be selected as the new known best point. 
 

Materials and Methods 
FOA will always start off with an initialization. To 

ensure a good starting point, the fly will be sent to 

each sector of the environment. Good location will 

then gain more visits of the fly. To prevent 

convergence on local extremes, the fly will be 

distributed and dispatched again according to the 

Levy’s flight (which is the model of the movement of 

the fly). After the initialization process, the known 

best location will be selected for the smelling process. 

The smelling process is used to detect the path which 

will yield better direction of attractiveness. The best 

direction will be chosen for further explorations. This is 

known as the tracking process. The tracking process will 

be able to identify the point where the direction is no 

longer suitable for further explorations. The smelling 

and tracking process will be conducted in each of the 

iterations until terminating conditions are met. However, 

after 30-50 iterations, randomization is made to occur 

again in order to prevent convergence at local optimums. 

All the tests are conducted using 16 flies. 
 

Initialization 

The initialization of FOA is an imitation of the fly 

swarm behaviour itself when the swarm is exploring 

the designated area for the first time. The flies come 

from every direction towards the targeted area (in the 

real world would be the fruit). By choosing the best 

point, further randomization around the best sector is 

then made. This attempt will enhance the chances to 

obtain points nearer to the global optimum. Finally, 

randomization is to be made in all the areas but is 

centered at the known best point. Indeed, initialization 

can be done by pure randomization but this approach 

would generally lead to a slower converging process or 

to be trapped at local optimum points. Initialization by 

8 flies near to the boundary and another 4 flies near to 

the center might give a good starting point
12

. Further 

randomization around the first few best points will 

further enhance the probability to get to the nearer 

points to the global optimum. However, randomization 

which involves all the areas cannot be spared or the 

chances of being trapped in local optimum will 

increase. 

Fig. 4 shows the 1
st
 step of Initialization with blue 

being the best among the 12; red, the second among the 

12 flies. Next, the flies will flock around two best 

known areas (Fig. 5). The best will gain more attention. 

Notice that fly algorithm does not require a fly to be 

stationed at the former known best point. At this point, 

“the blue” being the new known best point. The 3
rd

 step 

of initialization process in Fig. 6 shows that, although 

the randomization is on the entire sector, it is still 

centered on the known best point. However, a lower 

value of alpha should be set for Levy Flight motion 

with a larger variance. 

 
 

Fig. 41st step of Initialization. 
 

 
Fig. 5The 2nd step of initialization. 
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For multiple-peak problems, more evaluations must 

be made for the initialization. The second and third 

steps can be done for a multiple of times. The second 

step should be done based on the Levy Flight motion 

with the value alpha nearer to 2 and a smaller value for 

variance. Moreover, a strict bound around the known 

best and the few best points must be set. 
 

Smelling Algorithm 

After a series of controlled randomizations, the flies 

will focus on the known best point. The surrounding of 

the known best points will be explored. This is the 

basic idea of the smelling algorithm. However, a form 

of direct application as such yields poor results. Firstly, 

the radius must not be fixed all of the time. A shrinking 

process must be properly applied onto the radius. Due 

to the fact that the accuracy is set to a certain 

resolution, the smelling radius will fall to a constant 

and not to zero. Thus, exponential approximation could 

be made but it must be expressed in a piece-wise 

manner. The first part illustrates the falling value of the 

radius at the onset to half of its initialized value. The 

second part illustrates the falling value of the radius 

from half the initialized value to its minimum.  
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Where 1D and 2D are shaping factors. The larger 

the shaping factors, the slower the converging of the 

exponential term. Secondly, the radius must bounce 

within a predetermined range. It is found that a 

bounce of 30% above and below the smelling radius 

yields better result. This will eliminate the effect of 

faster or slower shrinking rate of smelling radius. 

Thirdly, an offset angle must be accounted. If there is 

no random offset angle, only certain angles will be 

examined, and this will reduce the converging rate. 

However, the recommended offset angle is within the 

angles in between the flies set earlier. 

Thus, a general equation for smelling process 

would be: 
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Where n is the number of flies that are involved in the 

smelling process, k is the number of flies among the 

involved flies while A and B are constants. A good 

estimation for A and B would be 1
2

=+
B

A with both 

A and B around 0.6. 

 
Tracking (Shooting) Process 

After selecting the best direction, tracking process 

can then be conducted. Instead of having a varying 

angle as in the smelling process, the tracking process 

will instead have its radius varying for the flies 

involved. For this process, the number of the flies 

should be more than 16. Among these flies, the best 

fly will be chosen. The radius of the chosen fly is 

known as hit radius. Fig. 7 illustrates the fact that 

shooting at the exact direction misses a chance to get 

nearer to the global best. 

Like the smelling radius, the maximum tracking 

radius and the minimum tracking radius shrinks over 

iterations. Logarithm scale is a good choice for the 

distance between tracking flies since a large leaping is 

unlikely to happen if compared to the points near to 

the known best point. It must be realized that known 

best only updates during the tracking process. Hence, 

the center will remain at the same point as long as no 

better solution is available. Defining UL to be the 

initial minimum radius, LL as the final minimum 

radius, UU as the initial maximum radius while LU is 

the final maximum radius, length is the number of 

iterations for the radius to settle down to the final 

 
 

Fig. 6The 3rd step of initialization. 
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radius, i is the number of current iterations, u and l are 

the current maximum radius and minimum radius 

respectively, 
 

UUilengthULUUu +−−+−= )1(*)1/()(   … (5) 

 

LUilengthLLLUl +−−+−= )1(*)1/()(   … (6) 
 

Defining r(k) to be the tracking radius of fly k, leng 

be number of flies, 
 

r(k) = 10^( (log u-log l)/(leng-1)*(k-1)+l ) … (7) 
 

Due to the variation during the initialization process, 

the shrinking should be done at variable rate. Hence, 

if the hit radius decreases, the shrinking should be 

quickened. The reverse should also be true. However, 

shrinking must be controlled. Therefore, a shrinking 

scale is introduced. The shrinking scale is reduced 

(normally 0.975 of its original value) only when the 

hit radius is smaller than a very small threshold at 3 

times the resolution. If it is not less than the threshold, 

the scale should increase at a very small rate 

(normally at 1.0005) so that the radius can be 

maintained. However, tracking in exact directions 

might end up giving poorer results. This is because 

the gradient is not always constant. Thus, 

randomization in terms of angles must be made. 

Based on the simulated result, the estimated range of 

angles should be in between 20 to 40 degrees at each 

side in order to minimize overshoot and undershoot. 

Fig. 8 illustrates shooting at a suitable range of C 

will enhance the chances to get nearer to the global 

best point. Most problem domains do not exhibit a 

constant gradient. Thus, randomization in shooting 

angles will certainly help in terms of converging 

speeds. Undoubtedly, there would also be chances of 

obtaining poorer results. However, the probability for 

such a thing to happen declines when the number of 

flies involved in the tracking increases. The position 

of fly number k is: 
 

;*)
2

1
(cos(*)(*)( CrandkrscaleposxkX +−++= θ … (8) 

 

;*)
2

1
(sin(*)(*)( CrandkrscaleposykY +−++= θ … (9) 

 

Where posx and posy are the coordinates of center, θ 

is the direction obtained from the smelling process 

while C is the angle bound in radian. 
 

Randomization in the Midst of Smelling and Tracking 

The purpose of randomization is to prevent the best 

known point to be trapped at the local minimum. In 

fact, the frequency of randomization is not as rapid as 

during smelling and tracking. Randomization should 

be started after the first 30-50 iterations and 

conducted at every 5 to 8 iteration after the first 30-50 

iterations. The frequency of randomization should be 

increased when a number of local optimum appears. 

Since the main objective is to find the global optimum 

and then venture beyond the best known area, the 

alpha of Levy motion can now be decreased. 
 

Simulation 

All the tests in the simulation are conducted using 

16 flies. With respect to the surrounding area, 10 

 
 

Fig. 7Tracking process and shooting direction 

 

 
Fig. 8The Shooting Range 
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evaluations will be used to determine the direction 

(smelling process) while 16 to 21 evaluations will be 

used to determine how far the path will be in that 

direction (shooting process). In other words, on 

average, 2 evaluations will be made by each fly in 

each of the iteration. Both the smelling radius and 

shooting radius will decay with iterations. Thus, these 

two parameters are crucial in determining the results. 

The number of evaluations in each shooting process is 

also crucial in determining the converging speed. 
 

The tests are made based on several benchmark 

functions for which their equations are listed in  

Table 1. De Jong’s function is a maximization 

problem while the rest of the functions are 

minimization problems (Fig. 9). Rosenbrook’s 

function has a long ridge and tends to cause 

initialization yields point far from the optimums  

(Fig. 10). It is actually the inverted version of De Jong 

function but with smaller range. Both functions have 

3 peaks and optimum point at (1, 1). Only the best 

point from the initialization will be chosen for further 

exploration. Goldstein (Fig. 11) and Martin were 

chosen as the third and forth functions for testing the 

algorithm. The test functions and their optima are 

shown in Table 1 and Table 2. 
 

Results and Discussions 

Although implementation and application aspects 

are the motivations behind this algorithm 

 
 

Fig. 9De Jong function with a long ridge at the middle and it tends to trap the fly at the beginning iterations. 

 
 

Fig. 10Rosenbrook’s Function which is the minimization problem. 
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development, accuracy is still an important point. The 

test has been done on De Jong function with mean 

evaluation of 759.839 times (Table 3). Although 

statistically better than the previous existing algorithms, 

the process is skewed to the right (Fig. 12). The 

standard deviation is 460.14 evaluations and typically 

the best known fitness reaches the optimum point within 

the third iteration process (Fig. 13). These experiments 

are done based on a 0.001 bound (Table 4) on the 

location basis and the algorithm is run for 1000 times.  
 

The test also has been done on the Rosenbrook’s 

function. In the first case, the boundary is from -1.2 to 

1.2 for the x and y dimension. The mean evaluation is 

500 times while the standard deviation is 301.74 

evaluations. Typical best known fitness is found on 

the 15
th
 iteration process (Fig. 14). For the second 

case, when the boundary is in the range from -10 to 5 

for each dimension, the average evaluation number is 

1098.3 while  the standard deviation is 490.8707. This 

Table 2Expected Result of Each Benchmark Functions. 
 

Function Name Expected Location Optimum Fitness 

De Jong (1, 1) 3905.93 

Rosenbrook (1, 1) 0 

Goldstein (0,-1) 3 

Martin (5,5) 0 

Branin (π,2.275) 0.3977 

 (3π,2.47175)  

 (-π,12.275)  

 
 

Fig. 113D surface of Goldstein Problem 

 

Table 1Boundary and equation for each test case. 
 

Function Name Boundary Equation  

De Jong [-2.048, 2.048] Max 3905.93 − 100(X2 − Y)2  − (1-X)2  

Rosenbrook i) [-1.2,1.2] Min 100 (X2 − Y)2 + (1-X)2 

 ii) [-10,10]   

Goldstein [-2,2] Min ((19-14x+ 3x2-14y +6xy + 3y2) (x + y + 1)2 + 1) X 

   ((18-32x + 12x2 + 48y – 36xy + 27 y2 ) (2x – 3y)2 + 30) 

Martin 0, 10] Min 

9

)2)10(2)( −++− xyx
 

 [-10, 5] Min (y-0.129080578x2 1.590909090x-6)2 + 9.602272727 cos x + 10 
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shows that for the De Jong function (Fig. 12) and the 

Rosenbrook functions (Fig. 15 and Fig. 16), the 

algorithm shows similar characteristics since all the 

histograms are skewed to the right. This is due to a 

long ridge shape of contour. In the rest of the case, the 

contours have round shapes and thus show a normal 

distribution in the histogram. 

For the Goldstein function, the average number of 

evaluations is 310.048, while the standard deviation  

is 66.3408. Goldstein  function  has no long ridge  and 

 
Fig. 12Histogram on Distribution of Evaluation Number over 1000 runs for De Jong Function 

 

 
Fig. 13Typical best known fitness at particular iterations for De Jong function. 

 

Table 3The number of evaluations for the different test cases. 
 

Function 

Name 

ANTS12 Bee 

Algorithm12 

Firefly 

Algorithm26 

Fly 

Optimization 

Algorithm 

De Jong 6000 868 730 766 

i) 6842 i) 631 i) - i) 500 Rosenbrook 

ii) 7505 ii)2306  ii)2923 ii) 1109 

Goldstein 5330 999 - 310 

Martin 1688 526 - 380 

Branin 1936 1657 - 1468 

Table 4The Main Parameter for Each Benchmark Function 

 
Initial Initial Function Name 

Smelling Radius Shooting Radius 

Shooting 

Evaluation 

De Jong 0.0018 0.26 21 

i) 0.0008 i) 0.036 i) 16 Rosenbrook 

ii) 0.0008 ii) 0.30 ii) 21 

Goldstein 0.0009 0.3 21 

Martin 0.0008 0.18 21 

Branin 0.0008 1.2 21 



ABIDIN et. al.: ALGORITHM OF MINI AUTONOMOUS SUKFACE VEHICLES 

 

 

259 

hence the process is normally distributed in terms of 

the number of evaluations (Fig. 17) and found its 

typical best known fitness on starting from the 4
th
 

iteration process (Fig. 18). 
 

As for the Martin function, the average evaluation is 

380.077 times while the standard deviation is 100.418 

times (Fig. 19). As for the case of the Branin’s 

Function, the mean number of evaluations is 1467.9 

while the standard deviation is 435.2853 (Fig. 20). 

 

The Fly Algorithm is designed for a small number of 

agents. This is because in reality, the number of agents is 

limited. To investigate the effect of the number of agents 

on the number of evaluations, the case 2 of Rosenbrook’s 

function is repeated for 8 and 24 agents. For the case of 8 

flies, the average number of evaluations is 1355 while the 

standard deviation is 788 (Fig. 21). 

The results show that the number of flies must be 

optimized. When the number of flies is as small as 8,  

 
 

Fig. 14Typical best known fitness at particular iteration for the Case 1 of Rosenbrook’s function. 

 

 
 

Fig. 15Resultant Histogram in Case 1 of Rosenbrook’s function 
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the number of evaluations for each shooting process is 

reduced, thus the average is as high as 1355. For the 

case of 16 flies, the average number of evaluations is 

1109 while the standard deviation is 507 (Fig. 22). 

However, when the number of flies is increased to 24, 

the redundant evaluation in each shooting process is 

increased (Fig. 23). In this case, the average number 

of evaluations is 1358 while the standard deviation is 

517. In conclusion, the standard deviation increases 

when the number of flies increases. However, further 

increment lead to more redundant evaluation, the 

standard deviation is maintained at the same level. 

 
Potential Application of FOA with Drosobots Project 

Prior to the development of the algorithm
27

, we 

constructed a group of 8  simple ASVs (Fig. 24). This 

 
 

Fig. 16Resultant Histogram in Case 2 of Rosenbrook’s Function 
 

 
 

Fig. 17The resultant Histogram in Test on Goldstein’s Function 
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is done in order that, the practical benefits of the 

algorithm and its approach may be demonstrated in  

a real application.  Lake  mappings using  cooperative 

multi-agent robotic system are practically non-

existent. Therefore, this provided us the niche  

to indulge in this additional venture i.e. to further 

explore the usage of underwater robotics technology 

as swarming agents to serve the FOA objective. The 

overview of Drosobots project is shown in Fig. 25. By 

using a 900 Mhz RF transceiver, these units are able 

to communicate amongst themselves and also a 

central station via distributed control architecture 

system with a maximum distance of 32 km (clear  line 

of sight). These units are designed to evaluate 

swarming algorithms in calm, open water 

environment  equipped  with active depth  transducers 

 
 

Fig. 18Typical Convergence in Goldstein Case. 

 

 
 

Fig. 19The Resultant Histogram of Martin’s Function 
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each having depth rating of up to a maximum of 300 

m. Each vehicle measures approximately 38 cm. in 

diameter, is propelled with two slim line water pumps, 

and powered by lithium ion batteries. The GPS’s 

accuracy is about 3 meters and can be improved up to 

until 1.3 meters by using GNSS infrastructure.  

 
 

Fig. 20The Resultant Histogram of Branin’s Function 

 

 
 

Fig. 21Histogram on distribution for the case of 8 flies. 
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Fig. 22Histogram on distribution for the case of 16 flies. 

 

 
 

Fig. 23Histogram on distribution for the case of 24 flies. 
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Fig. 24Actual Drosobots ready for deployment (left). The robots in action (right). 
 

 
 

Fig. 25Overview of the Drosobots Project. 
 

 
 

Fig. 262D and 3D mapping of Bukit Merah Lake. 
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We had conducted an experiment at Bukit Merah 

Lake (GPS coordinate: N4.9949294, E100.6603432). 

The scattered plots of Drosobots show that, the system is 

able to perform the navigation mission. However, 

certain unforeseen obstacles (such as drifting bushes) 

which are not detected on the GPSS system posed as a 

problem in that, the agents become trapped and could 

not proceed with the next way point (Fig. 26 & 27). In 

the near future, we plan to add an avoidance detection 

system to counter such problems and finally to integrate 

the FOA into the Drosobots. 
 

Conclusion 
Basic features of the Fly Algorithm have been 

illustrated at great length in the present study . 

Performance analysis as presented in the paper has 

assisted in deeper understanding of its efficiency as an 

optimal searching algorithm as compared to other 

animal inspired metaheuristic algorithms. Currently, its 

performance has enabled further development and 

improvements to this algorithm and most importantly 

to proceed with the specific mission: the Drosobots 

project. Development of this algorithm will further 

focus on multiple peak scenarios and enhancement of 

the shrinking method. The main idea of the algorithm 

which is based upon the Drosophila’s biological 

behavior shows that it has promising potential for 

solving optimization problems which may be harnessed 

for other applications. 
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Fig. 27Bukit Merah scattered plot trial. Deployment station (A). Obstacle (B) 
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