Please use this identifier to cite or link to this item: http://nopr.niscair.res.in/handle/123456789/8460
Title: Comparison of three back-propagation training algorithms for two case studies
Authors: Kişi, Özgür
Uncuoğlu, Erdal
Issue Date: Oct-2005
Publisher: CSIR
Series/Report no.: G06N3/02
Abstract: This paper investigates the use of three back-propagation training algorithms, Levenberg-Marquardt, conjugate gradient and resilient back-propagation, for the two case studies, stream-flow forecasting and determination of lateral stress in cohesionless soils. Several neural network (NN) algorithms have been reported in the literature. They include various representations and architectures and therefore are suitable for different applications. In the present study, three NN algorithms are compared according to their convergence velocities in training and performances in testing. Based on the study and test results, although the Levenberg-Marquardt algorithm has been found being faster and having better performance than the other algorithms in training, the resilient back-propagation algorithm has the best accuracy in testing period.
Description: 434-442
URI: http://hdl.handle.net/123456789/8460
ISSN: 0975-1017 (Online); 0971-4588 (Print)
Appears in Collections:IJEMS Vol.12(5) [October 2005]

Files in This Item:
File Description SizeFormat 
IJEMS 12(5) 434-442.pdf284.36 kBAdobe PDFView/Open


Items in NOPR are protected by copyright, with all rights reserved, unless otherwise indicated.