NISCAIR Online Periodicals Repository

NISCAIR ONLINE PERIODICALS REPOSITORY (NOPR)  >
NISCAIR PUBLICATIONS >
Research Journals >
Indian Journal of Pure & Applied Physics (IJPAP) >
IJPAP Vol.48 [2010] >
IJPAP Vol.48(01) [January 2010] >


Title: Role of bilayer chain coupling on junction voltage in layered high temperature cuprate superconductors
Authors: Singh, Mahipal
Keywords: Layered high-Tc cuprates
Josephson effect
Bilayer-chain coupling
Junction voltage
Issue Date: Jan-2010
Publisher: CSIR
Abstract: The junction voltage as a function of hopping matrix element for CuO-chains, hopping of the single particle from bilayer to chain, Josephson like Cooper pair tunneling and other microscopic interactions that exit in bilayer high temperature cuprate superconductors has been studied. For this purpose, a tight binding model Hamiltonian that includes various intra and inter-bilayer interactions alongwith contributions of Josephson-like tunneling of Cooper pairs from bilayer of CuO2 planes to CuO-chains and vice-versa as well as single particle hopping between CuO2 bilayer to CuO-chains in the form of bilayer chain interaction within a unit cell has been considered. The situation considered here is equivalent to a Josephson’s coupled SNS junction. In the superconducting state, the CuO2 bilayer acts as superconducting electrode and CuO-chains as one dimensional metal under fully oxygenated overdoped state sandwiched between these two electrodes as in the case of YBa2Cu3O7 bilayer system. There is always a possibility of Cooper pairs to tunnel from one bilayer CuO2 planes to other bilayer via CuO-chains. Using Green’s function technique, we have obtained expressions for superconducting order parameter, carrier density and junction voltage within BCS formalism. The numerical analysis shows that in bilayer cuprates, the junction voltage depends on the interlayer pair tunneling between the CuO2 planes, hopping matrix element (tch) for chains and the hopping of single particle from bilayer to chains. Finally, we have compared our theoretical results on junction voltage with the existing experimental results.
Page(s): 52-58
ISSN: 0975-1041 (Online); 0019-5596 (Print)
Source:IJPAP Vol.48(01) [January 2010]

Files in This Item:

File Description SizeFormat
IJPAP 48(1) 52-58.pdf151.64 kBAdobe PDFView/Open
 Current Page Visits: 625 
Recommend this item

 

National Knowledge Resources Consortium |  NISCAIR Website |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2012 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 511061 since 06-Feb-2009  Last updated on 11-Apr-2014Webmaster: nopr@niscair.res.in