Please use this identifier to cite or link to this item:
Title: Detecting Autism spectrum disorder with sailfish optimisation
Authors: Balakrishnan, K
Dhanalakshmi, R
Khaire, Utkarsh Mahadeo
Keywords: Autism;Random opposition-based learning;Sailfish optimization
Issue Date: Jun-2021
Publisher: NIScPR-CSIR, India
Abstract: Autism Spectrum Disorder (ASD), a neurodevelopmental disorder, has been a bottleneck to several clinical researchers due to data modularization, subjective analysis, and shifts in the accurate prediction of the disorder amongst the sample population. Subjective clinical research suffers from a lengthy procedure, which is a time-consuming process. In this paper, Sailfish Optimization (SFO), a recently developed nature-inspired meta-heuristics optimization algorithm, is being utilized to detect ASD. The hunting methodology of sailfish inspires SFO. Classical SFO has examined the search space in only one direction that affects its converging ability. The Random Opposition Based Learning (ROBL) strategy enhances the exploration capacity of SFO and successfully converges the predictive model to global optima. The proposed ROBL-based SFO (ROBL-SFO) selects relevant features from autism spectrum disorder (child and adult) datasets. According to the results obtained, the proposed model outperforms the convergence capability and reduces local-optimal stagnation compared to conventional SFOs.
Page(s): 68-73
ISSN: 0975-105X (Online); 0367-8393 (Print)
Appears in Collections:IJRSP Vol.50(2) [June 2021]

Files in This Item:
File Description SizeFormat 
IJRSP Vol.50(2) 68-73.pdf607.9 kBAdobe PDFView/Open

Items in NOPR are protected by copyright, with all rights reserved, unless otherwise indicated.