Please use this identifier to cite or link to this item: http://nopr.niscair.res.in/handle/123456789/4330
Title: Metal cutting process parameters modeling: an artificial intelligence approach
Authors: Tanikic, Dejan
Manic, Miodrag
Radenkovic, Goran
Mancic, Dragan
Keywords: Artificial neural networks
Metal cutting process
Neuro-fuzzy system
Issue Date: Jun-2009
Publisher: CSIR
Abstract: This study presents metal cutting process’ parameters modeling (cutting temperature, cutting force, and quality of machinedsurface) using artificial neural networks, and hybrid, adaptive neuro-fuzzy systems. Proposed models can be used for metalcutting process optimization, increasing productivity and reducing manufacturing costs.
Description: 530-539
URI: http://hdl.handle.net/123456789/4330
ISSN: 0022-4456
Appears in Collections:JSIR Vol.68(06) [June 2009]

Files in This Item:
File Description SizeFormat 
JSIR 68(6) 530-539.pdf199.95 kBAdobe PDFView/Open


Items in NOPR are protected by copyright, with all rights reserved, unless otherwise indicated.