Please use this identifier to cite or link to this item:
Title: Mechanical, thermal and morphological studies of microfibrillated jute/PLA biocomposites
Authors: Khan, G M Arifuzzaman
Abdullah-Al-Mamun, M
Haque, M Ahsanul
Rahman, Md Shafiqur
Shaikh, Hamid
Anis, Arfat
Al-Zahrani, Saeed M
Alam, M Shamsul
Keywords: Biocomposites;Mechanical properties;Microfibrillated jute;Morphological properties;Polylactic acid;Thermal properties
Issue Date: Sep-2017
Publisher: NISCAIR-CSIR, India
Abstract: In the present study, biocomposites based on microfibrillated jute (MFJ) fibre and polylactic acid (PLA) have been prepared by solvent-assisted compression moulding techniques. The MFJ is obtained by a sequence of alkali, chlorite and acid treatments of jute fibre. The biocomposites are fabricated by loading of 10, 20 and 30 wt% of MFJ fibre into the PLA matrix. The effect of MFJ fibre loading on the mechanical, thermal, and morphological properties of the composites is also studied. Among these composites, it is observed that 10 wt% fibre-filled biocomposite shows improved tensile strength and tensile modulus compared to virgin PLA film. Similarly, storage modulus and loss modulus are also found improved for the composites. These composites exhibit higher water absorption capacity and lower thermal stability than virgin PLA. The fibre-matrix adhesion is evaluated by scanning electron microscopy. The results are attributed to the improved interfacial adhesion between MFJ and PLA matrix for 10 wt% fibre-filled biocomposites.
Page(s): 291-298
ISSN: 0975-1025 (Online); 0971-0426 (Print)
Appears in Collections:IJFTR Vol.42(3) [September 2017]

Files in This Item:
File Description SizeFormat 
IJFTR 42(3) 291-298.pdf565.83 kBAdobe PDFView/Open

Items in NOPR are protected by copyright, with all rights reserved, unless otherwise indicated.