Please use this identifier to cite or link to this item:
Title: Energy transfer in classical trajectories of atomic-diatomic molecule collisions
Authors: Abdel-Halim, Hamzeh M
AI-Shihi, Badria I
Issue Date: May-1996
Publisher: NISCAIR-CSIR, India
Abstract: Energy transfer in nonreactive collisions of atom-diatomic molecules has been studied in three dimensions using Monte Carlo classical trajectories. Equations of motion, which predict the positions and momenta of the colliding particles after each step in the trajectory, have been integrated numerically by Runge-Kutta-Gill and Adams-Molton methods. The potential energy surfaces employed in the calculation, between the atom and each atom of the diatomic molecule, are Morse potentials plus an exponential repulsive term. Effects of the potential well-depth, initial energies (translational, rotational, and vibrational), and the masses of the colliding particles on energy transfer have been studied. The results show strong dependence of energy transfer type and quantity on these parameters. Dynamical analysis of the observations is given in order to get some understanding of the mechanism of energy transfer in nonreactive collisions.
Page(s): 366-372
ISSN: 0975-0975(Online); 0376-4710(Print)
Appears in Collections:IJC-A Vol.35A(05) [May 1996]

Files in This Item:
File Description SizeFormat 
IJCA 35A(5) 366-372.pdf577.33 kBAdobe PDFView/Open

Items in NOPR are protected by copyright, with all rights reserved, unless otherwise indicated.