NISCAIR Online Periodicals Repository

Research Journals >
Indian Journal of Geo-Marine Sciences (IJMS) >
IJMS Vol.34 [2005] >
IJMS Vol.34(3) [September 2005] >

Title: δ¹³C depleted oceans before the Termination 2: More nutrient-rich deep-water formation or light-carbon transfer?
Authors: Banakar, Virupaxa K.
Keywords: Equatorial Indian Ocean
Foraminifera- δ¹³C
Glacial termination-2
Deep-water circulation
Role of atmosphere
Issue Date: Sep-2005
Publisher: CSIR
Abstract: Carbon-isotopes (δ¹³C) composition of benthic foraminifera has been extensively used to understand the link between deep-water circulation and climate. Equatorial Indian Ocean δ¹³C records of planktic- and benthic-foraminifera together show an unexplained shift in the long-term mean oceanic- δ¹³C around the penultimate glacial termination (T2: 132 ka). The time-series planktic- and benthic- species δ¹³C records exhibit two distinct mean- δ¹³C levels. The low mean- δ¹³C characterises the pre-T2 period (250 ka – 132 ka), while the post-T2 (~95 ka – Present) period records high mean- δ¹³C, generating a one-time shift of ~0.4 ‰ within the last ~250 kyr time-period. This shift is a result of consistently higher- δ¹³C in post-T2 glacial (and interglacial) periods as compared to the pre-T2 glacial (and interglacial) periods, and begins around the T2 (~132 ka), lasts until ~95 ka, and sustained through the T1. The normally observed glacial-interglacial δ¹³C variations of ~0.3 ‰ occur as secondary fluctuations around the long-term primary mean-levels in the Indian Ocean, as well as in other oceans. The T2- δ¹³C shift appears to be an inherent feature of the world oceans although with certain timing offsets. Therefore, it should represent a fundamental change in deep-ocean circulation (nutrient) dynamics. But, the leading hypotheses of circulation-driven oceanic distribution of δ¹³C fail to explain the observed mean- δ¹³C shift. Therefore it is proposed that, in addition to changes in deep-water circulation, the oceans before T2 were characterised by significantly lower- δ¹³C than after. Such low- δ¹³C mean-ocean during the pre-T2 period might have been the result of significantly increased transfer of terrestrial light-carbon to the ocean reservoir due to changes in global wind patterns.
Page(s): 249-258
ISSN: 0379-5136
Source: IJMS Vol.34(3) [September 2005]

Files in This Item:

File Description SizeFormat
IJMS 34(3) 249-258.pdf735.52 kBAdobe PDFView/Open
 Current Page Visits: 110 
Recommend this item


Online Submission of Articles |  NISCAIR Website |  National Knowledge Resources Consortium |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2015 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 162727 since 01-Sep-2015  Last updated on 21-Jun-2016Webmaster: