NISCAIR Online Periodicals Repository

NISCAIR ONLINE PERIODICALS REPOSITORY (NOPR)  >
NISCAIR PUBLICATIONS >
Research Journals >
Indian Journal of Biochemistry and Biophysics (IJBB) >
IJBB Vol.49 [2012] >
IJBB Vol.49(6) [December 2012] >


Title: Docking studies on novel alkaloid tryptanthrin and its analogues against enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis
Authors: Tripathi, Ankit
Wadia, Nupur
Bindal, Deepak
Jana, Tarakanta
Keywords: Mycobacterium tuberculosis
Enoyl acyl carrier protein reductase
Natural alkaloid
Tryptanthrin
Molecular docking
Issue Date: Dec-2012
Publisher: NISCAIR-CSIR, India
Abstract: Isoniazid resistance is a serious threat in the battle against the treatment of multi-drug resistant tuberculosis (MDR-TB) and extremely drug-resistant tuberculosis (XDR-TB). Isoniazid is an inhibitor of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis, which is an important and functional enzyme of the type II fatty acid synthesis system and important therapeutic target. Natural alkaloid tryptanthrin and its analogues have shown anti-tubercular activity against MDR-TB, but their cellular target is unknown. In this work, in silico molecular docking was performed using docking server in order to see the interaction of tryptanthrin and its 15 analogues with InhA of M. tuberculosis. Results showed that among tryptanthrin and its 15 analogues, tryptanthrin and its two analogues exhibited good affinity to the binding site of InhA with free binding energy of -7.94 kcal/mol and inhibition constant (Ki) of 1.50 µm. Active site residues of InhA interacting with tryptanthrin were Ser13, Thr39, Phe41, Leu63, Asp64, Val65, Ile95, Phe97 and Ile122. In binding mode, polar bond were found between O1 (1) with Asp64 of bond length (3.34 Å) and hydrophobic bonds were found between Leu63 with C15 and C12, Val65 with C7, Val65 with C12 and C4, Ile95 with C6 and C7, Ile95 with C10, C12 and C14. Important pi-pi bonds were found between Phe41 with C2, C5, C7, C12, C4, C6, C8, C9, C13 and Phe97 with C9. These interactions indicated stability of tryptanthrin in active residue and suggested it as a potential drug candidate. Thus, good affinity of tryptanthrin to binding site of InhA may lead to synthesis of anti-tubercular drug capable of combating MDR strains of M. tuberculosis.
Page(s): 435-441
CC License:  CC Attribution-Noncommercial-No Derivative Works 2.5 India
ISSN: 0975-0959 (Online); 0301-1208 (Print)
Source:IJBB Vol.49(6) [December 2012]

Files in This Item:

File Description SizeFormat
IJBB 49(6) 435-441.pdf287.86 kBAdobe PDFView/Open
 Current Page Visits: 553 
Recommend this item

 

National Knowledge Resources Consortium |  NISCAIR Website |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2012 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 623812 since 06-Feb-2009  Last updated on 13-Nov-2014Webmaster: nopr@niscair.res.in