NISCAIR Online Periodicals Repository

Research Journals >
Indian Journal of Experimental Biology (IJEB) >
IJEB Vol.49 [2011] >
IJEB Vol.49(12) [December 2011] >

Title: Transient cell function disruption by low dose acute exposure of ionizing radiation
Authors: Saxena, Priyanka
Bhatnagar, Aseem
Nishad, Dhruv Kumar
Tyagi, Ritu
Rana, Poonam
Ali, Shakir
Mittal, Gaurav
Keywords: Thallium-201
Thyroid stunning
Na+-K+ ATPase pump
Issue Date: Dec-2011
Publisher: NISCAIR-CSIR, India
Abstract: Incubation of BMG-1 cells with thallium chloride (201Tl) in the range of diagnostic dose did not show a smooth uptake curve and appeared to have an unsuspected deviation in initial phase. In the present study this unexpected phenomenon was explored, using commonly used radionuclides (viz., 201Tl and 131I). Comparison was made with technetium-99m pertechnetate (99mTcO4-) and technetium-99m labeled methoxyisobutylisonitrile (99mTc-MIBI) that are known to show conventional 2 phase graph representing inflow and outflow segments. Serial in vitro, ex-vivo and in vivo gamma scintigraphy as well as NMR spectroscopy experiments were conducted to corroborate the results. BMG-1 cells demonstrated a four-phase uptake pattern with 201Tl as compared to a conventional biphasic pattern with 99mTc-MIBI. Flow cytometry data however did not reveal any 201Tl induced cell injury. Further, mice tissue extracts injected with 201Tl also showed a transient depression in its uptake. Scintigraphy experiments in rabbits administered with diagnostic dose of 201Tl and 131I confirmed the in vitro and ex vivo findings. Further, proton NMR spectroscopy showed decrease in the level of choline at 3 h and 24 h in 201Tl treated animals as compared to control. Phosphoethanolamine peak firstly decreased at 3 h but reached normal level at 24 h time point. No significant change was observed in the level of betaine. This transient reduction in internalization of 201Tl and 131I may represent a hitherto unknown acute effect of low dose radiation, i.e., transient depression in Na+-K+ ATPase pump activity without any apparent evidence of cell damage, representing a transient cell membrane dysfunction. The phenomenon may present a mechanistical explanation of ‘thyroid stunning’ at cellular level and suggest that it may be more universal in nature than suspected till now.
Page(s): 895-903
CC License:  CC Attribution-Noncommercial-No Derivative Works 2.5 India
ISSN: 0975-1009 (Online); 0019-5189 (Print)
Source:IJEB Vol.49(12) [December 2011]

Files in This Item:

File Description SizeFormat
IJEB 49(12) 895-903.pdf592.95 kBAdobe PDFView/Open
 Current Page Visits: 855 
Recommend this item


Online Submission of Articles |  NISCAIR Website |  National Knowledge Resources Consortium |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2015 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 165041 since 01-Sep-2015  Last updated on 27-Jun-2016Webmaster: