NISCAIR Online Periodicals Repository

Research Journals >
Indian Journal of Biochemistry and Biophysics (IJBB) >
IJBB Vol.48 [2011] >
IJBB Vol.48(5) [October 2011] >

Title: Kinetic properties of cell wall bound superoxide dismutase in leaves of wheat (Triticum aestivum L.) following stripe rust (Puccinia striiformis) infection
Authors: Asthir, Bavita
Koundal, A
Bains, N S
Keywords: Puccinia striiformis
Superoxide dismutase
Thermodynamic properties
Triticum aestivum
Issue Date: Oct-2011
Publisher: NISCAIR-CSIR, India
Abstract: Stripe rust (Puccinia striiformis f.sp. tritici) is the most devastating disease of wheat (Triticum aestivum L.) accounting huge economical losses to the industry worldwide. HD 2329 was a widely grown wheat cultivar which had become highly susceptible to stripe rust and was used to understand the biochemical aspects of the host pathogen interaction through characterization of superoxide dismutase (SOD). In the present study, two types of SOD, ionically or covalently bound to the particulate fraction were found in the stripe rust infected and uninfected wheat leaves of susceptible cultivar HD 2329. Cell walls of leaves contained a high level of SOD, of which 41-44% was extractable by 2 M NaCl and 10-13% by 0.5% EDTA in infected and uninfected leaves. The NaCl-released SOD constituted the predominant fraction. It exhibited maximum activity at pH 9.0, had a Km value of 1.82-2.51 for uninfected and 1.77-2.37 mM for infected, respectively with pyrogallol as the substrate, and a Vmax of 9.55-21.4 and 12.4-24.1 A min-1g-1FW. A temperature optimum of 20oC was observed for SOD of both uninfected and infected leaves. SOD showed differential response to metal ions, suggesting their distinctive nature. Inhibition of wall bound SOD by iodine and its partial regeneration of activity by mercaptoethanol suggested the involvement of cysteine in active site of the enzyme. These two forms showed greater differences with respect to thermodynamic properties like energy of activation (Ea) and enthalpy change (H), while entropy change (S) and free energy change (G) were similar. The results further showed that pathogen infection of the leaves of susceptible wheat cultivar induced a decrease in the SOD activity and kinetics which might be critical during the response of plant cells to the infection.
Page(s): 341-345
CC License:  CC Attribution-Noncommercial-No Derivative Works 2.5 India
ISSN: 0975-0959 (Online); 0301-1208 (Print)
Source:IJBB Vol.48(5) [October 2011]

Files in This Item:

File Description SizeFormat
IJBB 48(5) 341-345.pdf104.75 kBAdobe PDFView/Open
 Current Page Visits: 118 
Recommend this item


Online Submission of Articles |  NISCAIR Website |  National Knowledge Resources Consortium |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2015 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 170701 since 01-Sep-2015  Last updated on 30-Jun-2016Webmaster: