Please use this identifier to cite or link to this item:
Title: Exploring the binding affinities of p300 enzyme activators CTPB and CTB using docking method
Authors: Devipriya, B
Parameswari, A Renuga
Rajalakshmi, G
Palvannan, T
Kumaradhas, P
Keywords: Binding affinity;p300;CTPB;CTB;Docking;Hydrogen bonding interaction
Issue Date: Dec-2010
Publisher: NISCAIR-CSIR, India
Abstract: CREB binding protein (CBP) and E1A binding protein p300, also known as p300 are functionally related transcriptional co-activators (CoAs) and histone acetyltransferases (HATs). Some small molecules, which target HATs can activate or inhibit the p300 enzyme potently. Here, we report the binding affinities of two small molecules CTPB [N-(4-chloro- 3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide] and CTB [N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide] with p300 using docking method to obtain the insight of their interaction with p300. These small molecules bind to the enzyme, subsequently causing a structural change in the enzyme, which is responsible for the HAT activation. CTB exhibits higher binding affinity than CTPB, and their lowest docked energies are -7.72, -1.18 kcal/mol, respectively. In CTPB molecule, phenolic hydroxyl of Tyr1397 interacts with the non-polar atoms C(5E) and C(5F), and forms polar-non polar interactions. Similar interactions have also been observed in CTB. The residues Tyr1446 and Cys1438 interact with the non-pentadecyl atoms. Further, the docking study predicts a N-HO hydrogen bonding interaction between CTB and Leu1398, in which the HO contact distance is 2.06 Å. The long pentadecyl chain of CTPB reduces the formation of hydrogen bond with the p300. The H-bond interaction could be the key factor for the better activation of CTB.
Page(s): 364-369
ISSN: 0975-0959 (Online); 0301-1208 (Print)
Appears in Collections:IJBB Vol.47(6) [December 2010]

Files in This Item:
File Description SizeFormat 
IJBB 47(6) 364-369.pdf453.67 kBAdobe PDFView/Open

Items in NOPR are protected by copyright, with all rights reserved, unless otherwise indicated.