NISCAIR Online Periodicals Repository

Research Journals >
Indian Journal of Biochemistry and Biophysics (IJBB) >
IJBB Vol.47 [2010] >
IJBB Vol.47(5) [October 2010] >

Title: Celecoxib mitigates cigarette smoke induced oxidative stress in mice
Authors: Koul, Ashwani
Arora, Neha
Keywords: Cyclooxygenase
Cigarette smoke
Oxidative stress
Issue Date: Oct-2010
Publisher: NISCAIR-CSIR, India
Abstract: Cigarette smoke (CS) is a rich source of radicals, predisposing the cell to oxidative stress resulting in inflammation. Chronic inflammation is a recognized risk factor for carcinogenesis. Cyclooxygenase-2 (COX-2) is a mediator of inflammatory pathway and may, therefore, contribute to carcinogenesis. There are several reports that suggest the association between CS and COX-2 associated risk to cancer. In the present study, we examined the role of celecoxib (a selective COX-2 inhibitor) in modulating the oxidative stress caused by CS inhalation in mice. CS exposure for a period of 10 weeks caused oxidative stress in the pulmonary and hepatic tissues, as evident from the increase in lipid peroxidation levels (LPO) and decrease in reduced glutathione (GSH) levels. Celecoxib (125 mg/kg body weight for 8 weeks) administration to CS inhaling mice reduced the oxidative stress by decreasing the LPO levels and enhancing the GSH levels in comparison to the CS-exposed group. CS exposure repressed the enzymatic antioxidant defense system, as evident from the decrease in catalase (CAT) and superoxide dismutase (SOD) activities. Co-adminstration of celecoxib considerably reversed the changes in the enzymatic antioxidant defense system. Histopathological studies of lungs showed that CS exposure induced alveolar wall destruction and air space enlargement. In co-treated group, the alveolar septa were thicker than normal with apparent infiltration of inflammatory cells. In CS-exposed group, hepatic tissue exhibited vacuolization and macrophage infiltration. Co-treatment with celecoxib restored the normal histoarchitechture in hepatic tissues of CS inhaling mice. Thus, the present study demonstrated that celecoxib adminstration reduced the oxidative stress-mediated risk to carcinogenesis, due to its ability to boost the antioxidant defense system.
Page(s): 285-291
CC License:  CC Attribution-Noncommercial-No Derivative Works 2.5 India
ISSN: 0975-0959 (Online); 0301-1208 (Print)
Source:IJBB Vol.47(5) [October 2010]

Files in This Item:

File Description SizeFormat
IJBB 47(5) 285-291.pdf335.27 kBAdobe PDFView/Open
 Current Page Visits: 1317 
Recommend this item


Online Submission of Articles |  NISCAIR Website |  National Knowledge Resources Consortium |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2015 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 169062 since 01-Sep-2015  Last updated on 29-Jun-2016Webmaster: