NISCAIR Online Periodicals Repository

NISCAIR ONLINE PERIODICALS REPOSITORY (NOPR)  >
NISCAIR PUBLICATIONS >
Research Journals >
Indian Journal of Biochemistry and Biophysics (IJBB) >
IJBB Vol.47 [2010] >
IJBB Vol.47(4) [August 2010] >


Title: Role of H2O2 and cell wall monoamine oxidases in germination of Vigna radiata seeds
Authors: Verma, Giti
Sharma, Samir
Keywords: Aromatic monoamines (AMA)
Monoamine oxidases (MAO)
Protein reserve mobilization
Reactive oxygen species (ROS)
Seed germination
Issue Date: Aug-2010
Publisher: CSIR
Abstract: Plant cell wall expresses monoamine oxidases (MAOs) that catalyze oxidation of secreted amines and produce H2O2 in the process. The H2O2, so produced is used by cell wall peroxidases for lignification of cell wall or for plant defense. The natural substrates for these MAOs are elusive, but polyamines and certain catecholamines have been proposed as candidates. Reactive oxygen species are also known to act as signaling molecules controlling plant metabolism. Mungbean (Vigna radiata) has long served as the plant model of choice while studying molecular programs followed during germination and seed development. In this study, we tested the effect of externally added MAO substrates epinephrine and H2O2 on storage protein mobilization in germinating seeds of Vigna radiata. The seeds were imbibed in the presence of 50 M epinephrine and 10 M H2O2. These low concentrations of the two compounds were used to exclude direct effects on proteolysis and were arrived at after testing a range of the two and choosing the most effective concentration. These seeds showed 11% and 7% decrease in fresh weight respectively, indicating greater storage mobilization and a corresponding 19% and 46% increase in axis length as compared to untreated seeds. Soluble protein in seeds treated with epinephrine and H2O2 decreased significantly by 34% and 33% as compared to untreated seeds. Electrophoretic analysis of seed proteins revealed a startling and selective depletion of storage proteins in treated seeds. The results indicated a clear involvement of H2O2 in storage protein mobilization in the cotyledons. We propose that H2O2 generated within cell walls of seeds serves as a signaling molecule guiding germination events, including protein reserve mobilization.
Page(s): 249-253
ISSN: 0975-0959 (Online); 0301-1208 (Print)
Source:IJBB Vol.47(4) [August 2010]

Files in This Item:

File Description SizeFormat
IJBB 47(4) 249-253.pdf135.42 kBAdobe PDFView/Open
 Current Page Visits: 1060 
Recommend this item

 

National Knowledge Resources Consortium |  NISCAIR Website |  Contact us |  Feedback

Disclaimer: NISCAIR assumes no responsibility for the statements and opinions advanced by contributors. The editorial staff in its work of examining papers received for publication is helped, in an honorary capacity, by many distinguished engineers and scientists.

CC License Except where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India

Copyright © 2012 The Council of Scientific and Industrial Research, New Delhi. All rights reserved.

Powered by DSpace Copyright © 2002-2007 MIT and Hewlett-Packard | Compliant to OAI-PMH V 2.0

Home Page Total Visits: 623180 since 06-Feb-2009  Last updated on 13-Nov-2014Webmaster: nopr@niscair.res.in