Hepatoprotective activity of \textit{Luffa acutangula} against \textit{CCl}$_4$ and rifampicin induced liver toxicity in rats: A biochemical and histopathological evaluation

Vishal B Jadav1, Vishnu N Thakare2, Anupama A Suralkar1, Avinash D Deshpande1 & Suresh R Naik2

1 Department of Pharmacology, Padm Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411 018, India
2 Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences (SIPS), Kusgaon (Bk), Lonavala 410 401, India

Received 16 December 2009; revised 9 April 2010

Hepatoprotective activity of hydroalcoholic extract of \textit{Luffa acutangula} (HAELA) against carbon tetrachloride (\textit{CCl}$_4$) and rifampicin-induced hepatotoxicity in rats was evaluated and probable mechanism(s) of action has been suggested. Administration of standard drugs- silymarin and HAELA showed significant hepatoprotection against \textit{CCl}$_4$ and rifampicin induced hepatotoxicity in rats. Hepatoprotective activity of HAELA was due to the decreased levels of serum marker enzymes viz., (AST, ALT, ALP and LDH) and increased total protein including the improvement in histopatharchitecture of liver cells of the treated groups as compared to the control group. HAELA also showed significant decrease in \textit{malondialdehyde} (MDA) formation, increased activity of non-enzymatic intracellular antioxidant, glutathione and enzymatic antioxidants, catalase and superoxide dismutase. Results of this study demonstrated that endogenous antioxidants and inhibition of lipid peroxidation of membrane contribute to hepatoprotective activity of HAELA.

Keywords: Antioxidant, Hepatoprotection, \textit{Luffa acutangula}, Serum marker enzymes

The plant \textit{Luffa acutangula} (\textit{L.acyvar. amara} Clarke (Cucurbitaceae), commonly known Ridge Gourd in English and \textit{Kadudodaka} in Marathi, is fairly large climber found in Western, Central and Southern India and regarded as the wild form of cultivated species. In Ayurveda fruits and seeds of \textit{L. acutangula} used to treat jaundice, biliousness, bronchitis and asthma1. \textit{L. acutangula} has been shown to possess CNS depressant activity2, \textit{in vitro} antioxidant activity3, and larvicidal activity4. Phytochemical studies and documented report have indicated that \textit{L. acutangula} contains β-carotenes5, flavonoids6, acutosides A-G, oleanane type triterpene saponins7, acutosides H-I, oleanolic acid saponins8. Since hydroalcoholic extract of \textit{L. acutangula} was shown to possess protective potential against the free radicals activity, as evidenced by \textit{in vitro} antioxidant effect4, the present study has been designed to investigate hepatoprotective activity of hydroalcoholic extract of \textit{L. acutangula} (HAELA) in \textit{CCl}$_4$ and rifampicin induced hepatic damage in rats. Efforts were also made to understand the possible mechanism of hepatoprotective activity of HAELA.

Results of the hepatoprotective activity of HAELA, which can be correlated with its antioxidant activity.

Materials and Methods

\textbf{Plant material}—Fresh fruits of \textit{L. acutangula} were collected from Hindustan Antibiotic colony Pimpri, Pune in the month of December 2007 and were air dried in shade. The plant material was authenticated and deposited at Agharkar Research Institute, Pune, India (Voucher No. Auth 08-005).

\textbf{Extraction process}—Dried fruits of \textit{L. acutangula} was pulverized and extracted with aqueous ethanol (70\% \textit{v/v}; HAELA) for 72 hr by maceration process, which was repeated for 4 times to ensure the complete extraction of chemical constituents from the fruits.

\textbf{Chemicals}—Silymarin (Mircro labs Ltd. Mumbai, India), rifampicin (Lupin Ltd Aurangabad, India), carbon tetrachloride (Qualigens Fine Chemicals, Mumbai, India), thiobarbituric acid (Spectrochem Pvt. Ltd., Mumbai, India), 5,5$'$-dithiobis (2-nitrobenzoic acid) (DTNB) and epinephrine (Sigma Chemical Co., St Louis, MO, USA), standard reagent and kits (Nirmal Lab, India) for determination of aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) and total protein (TP) were procured. All other chemicals were obtained from local sources are of analytical grade.
Animals—Wistar rats of either sex (150-200 g) were procured from National Toxicology Center, Pune. Rats, 6 in a group, were housed in clean polypropylene cages under standard conditions of humidity (50 ± 5%), temperature (25 ± 2°C) and light (12 hr light: 12 hr dark cycle) and free access to food and water ad libitum. Experiments were conducted after obtaining the approval from Institutional Animal Ethics Committee constituted as per CPCSEA guidelines.

Acute toxicity—Acute toxicity study for HAELA was carried out on mice according to OECD guidelines. Different doses (500, 750, 1000 and 2000 mg/kg) of HAELA were administered orally as a suspension prepared in 1% (w/v) carboxy methyl cellulose (CMC) to all the animals and they were observed for a period of 72 hr for clinical signs, symptoms and mortality.

CCl₄ induced liver injury—Overnight fasted healthy rats were randomly divided into 6 groups, (6 rats/group) and allowed free access to water.

Group I—Normal control, received olive oil (1 ml/kg, ip) daily for 7 days from 4th to 10th day.

Group II—CCl₄ control, received 1:1 olive oil and CCl₄ (1 ml/kg, ip) daily for 7 days from 4th to 10th day.

Group III—Standard group, received silymarin (200 mg/kg, po) daily for 10 days, and in addition received 1:1 olive oil and CCl₄ (1 ml/kg, ip) daily for 7 days from 4th to 10th day.

Group IV—HAELA 100, received HAELA (100 mg/kg, po) daily for 10 days, and in addition received 1:1 olive oil and CCl₄ (1 ml/kg, ip) daily for 7 days from 4th to 10th day.

Group V—HAELA 200, received HAELA (200 mg/kg, po) daily for 15 days from 16th to 30th day, and in addition received rifampicin (100 mg/kg, po) in the form of suspension prepared in 1% CMC daily for 30 days.

Group VI—HAELA 400, received HAELA (400 mg/kg, po) daily for 15 days from 16th to 30th day, and in addition received rifampicin (100 mg/kg, po) in the form of suspension prepared in 1% CMC daily for 30 days.

Biochemical studies—Rats were sacrificed 24 h after the administration of last dose of CCl₄, rifampicin and HAELA, and blood samples were collected by cardiac puncture under light ether anesthesia. Serum was separated by centrifugation at 2500 rpm (Remi, USA) below 30°C for 30 min and marker enzymes viz AST, ALT, ALP, LDH and TP were determined in serum using reagents and kits (Nirmal Lab, Jalgaon, India).

Liver homogenates (10% w/v) were prepared in ice cold 10 mM Tris buffer (pH 7.4). Quantitative estimation of MDA formation was done by determining the concentration of thiobarbituric acid reactive substances (TBARS) in 10 % liver homogenates by the method of Ohkawa (1979). Amount of MDA formed was quantified by reaction with thiobarbituric acid and used as an index of lipid peroxidation. The results were expressed as nmole of MDA/g of wet tissue using molar extinction coefficient of chromophore (1.56 × 10^5/M/cm) and 1, 1, 3, 3-tetraethoxyrioace as standard. Non-enzymatic antioxidant reduced glutathione (GSH) and enzymatic antioxidants-superoxide dismutase (SOD) and catalase (CAT) were also assysed in liver homogenates.

Histopathological studies—Liver tissue sections of control and HAELA rats were fixed in (10%; v/v) formalin solution and after dehydration, the sections of liver were embedded in paraffin wax, cut into 4-6 μm thick sections. Histoarchitectural studies were
carried out after staining with haematoxylin-eosin and then observed under light microscope at 400 × magnifications.

Statistical analysis—The results were expressed as mean ± SE and statistically analyzed by one-way ANOVA followed by Tukey-Kramer test. A value of P<0.05 was considered to be statistically significant.

Results and Discussion

Extraction process—Percentage yield of HAELA was found to be 3.2% (w/w). Preliminary phytochemical analysis for HAELA indicated the presence of flavonoid (sulphuric acid test and ferric chloride test), presence of tannins (ninhydrin test), presence of saponins (foam test) and presence of steroids (salkowski test). The other physicochemical and analytical profiles are presented in Table 1.

<table>
<thead>
<tr>
<th>Test</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical appearance</td>
<td>Brown amorphous powder</td>
</tr>
<tr>
<td>Melting Point</td>
<td>Decomposes above 48°C</td>
</tr>
<tr>
<td>Solubility</td>
<td>Freely soluble in methanol, ethanol sparingly soluble in water, ether, chloroform</td>
</tr>
<tr>
<td>UV EtOH λ Max nm</td>
<td>273</td>
</tr>
<tr>
<td>[E% 1cm]</td>
<td></td>
</tr>
<tr>
<td>Rf values (TLC) *of HAELA</td>
<td>0.76</td>
</tr>
<tr>
<td>*solvent system: chloroform: methanol(8:2)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1—Phytochemical and analytical profile of HAELA

Acute toxicity studies—The LD₅₀ value by oral route was not determined as no mortality was observed upto 10 g/kg dose level. No mortality was observed during 72 h of observation period.

Biochemical studies—Both the CCl₄ and rifampicin treatment significantly increased serum AST, ALT, ALP and LDH (P<0.001) and decreased TP level (P<0.001). Treatment with silymarin (200 mg/kg) and HAELA (100, 200 and 400 mg/kg) prevented the elevation of serum marker enzymes AST, ALT, ALP and LDH and restored TP in both CCl₄ and rifampicin treated rats (Tables 2 and 3).

Both CCl₄ and rifampicin treatment to control groups of rats showed significant (P<0.001) increase in MDA formation, decreased GSH levels significantly (P<0.001). Treatment with silymarin (200 mg/kg) and HAELA (100, 200 and 400 mg/kg) prevented the decrease in liver GSH due to CCl₄ and rifampicin, and able to restore the liver GSH levels to almost normal (P<0.001). In addition, the levels of CAT and SOD in liver homogenates were also decreased significantly (P<0.001) with CCl₄ and rifampicin treatment. Treatment with silymarin and HAELA also significantly (P<0.001) with CCl₄ and rifampicin treatment. Treatment with silymarin (200 mg/kg) and HAELA (100, 200 and 400 mg/kg) treatment significantly (P<0.001) decreased the

- increase of serum marker enzymes AST, ALT, ALP and LDH (P<0.001).
- decrease of liver GSH due to CCl₄ and rifampicin.
- levels of CAT and SOD in liver homogenates.

Table 2—Effect of HAELA on serum marker enzymes and protein in CCl₄ induced liver injury

<table>
<thead>
<tr>
<th>Biochemical Parameter</th>
<th>Vehicle (1 ml/kg)</th>
<th>CCl₄ (1 ml/kg)</th>
<th>Silymarin+CCl₄ (1 ml/kg)</th>
<th>HAELA+CCl₄ (1 ml/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (U/ml)</td>
<td>23.80±6.84</td>
<td>112.60±8.09***</td>
<td>27.20±4.30***</td>
<td>64.80±9.55***</td>
</tr>
<tr>
<td>ALT (U/ml)</td>
<td>35.10±2.75</td>
<td>87.89±2.59***</td>
<td>37.50±1.47***</td>
<td>77.45±3.52***</td>
</tr>
<tr>
<td>ALP (KA units/dl)</td>
<td>2.57±0.41</td>
<td>46.25±3.16***</td>
<td>38.34±2.16***</td>
<td>32.92±2.31***</td>
</tr>
<tr>
<td>TP (gm/dl)</td>
<td>10.82±0.74</td>
<td>6.02±0.33***</td>
<td>9.91±0.71***</td>
<td>6.10±0.40</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>245.7±17.12</td>
<td>810.97±18.52***</td>
<td>344.10±31.04***</td>
<td>718.12±48.38</td>
</tr>
</tbody>
</table>

Table 3—Effect of HAELA on serum marker enzymes and protein in rifampicin induced liver injury

<table>
<thead>
<tr>
<th>Biochemical Parameter</th>
<th>Vehicle (1 ml/kg)</th>
<th>Rifampicin (100 mg/kg)</th>
<th>Silymarin+rifampicin (100 mg/kg)</th>
<th>HAELA+rifampicin (100 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (U/ml)</td>
<td>33.2±5.04</td>
<td>114±12.53***</td>
<td>36.4±8.04***</td>
<td>68.2±5.87***</td>
</tr>
<tr>
<td>ALT (U/ml)</td>
<td>15.8±8.13</td>
<td>108±11.19***</td>
<td>22.2±9.52***</td>
<td>70±8.86***</td>
</tr>
<tr>
<td>ALP (KA units/dl)</td>
<td>3.3±0.73</td>
<td>30.82±2.06***</td>
<td>8.56±1.23***</td>
<td>20.62±0.94***</td>
</tr>
<tr>
<td>TP (gm/dl)</td>
<td>7.88±0.37</td>
<td>4.93±0.13***</td>
<td>6.88±0.37***</td>
<td>4.59±0.20</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>249.70±4.07</td>
<td>692.15±77.38***</td>
<td>428.47±14.29***</td>
<td>461.43±15.43***</td>
</tr>
</tbody>
</table>

P values: ***<0.001, CCl₄ control compared with vehicle treated group.

P values: *<0.01, <0.05, <0.001, (silymarin+CCl₄) and (HAELA+CCl₄) treated groups compared with CCl₄ control group.

P values: ***<0.001, Rifampicin control compared with vehicle treated group.

P values: *<0.01, <0.05, (silymarin+ rifampicin) and (HAELA+rifampicin) treated groups compared with rifampicin control group.
increased concentration of MDA formation in liver due to CCl₄ and rifampicin treatment (Tables 4 and 5).

Histopathological studies—The livers of animals of vehicle treated control group showed normal histology (Fig. 1a). The liver sections of animals treated with CCl₄ and rifampicin showed a moderate degree of centrilobular necrosis with fatty and lymphocytes infiltration. The perilobular zones showed moderate diffused granular degeneration. The sinusoids were moderately obliterated. (Fig. 1b and 2b).

Compared with lesions observed with CCl₄ and rifampicin groups, the lesions noted in the livers of silymarin treated animals were of a much milder degree (Fig. 1c and 2c). Further, a mild degree of centrilobular fatty infiltration and lymphocyte infiltration was observed. Regenerative foci of a mild to moderate degree were also noted in the livers of silymarin treated rats.

The livers of the animals treated with HAELA 100, 200 and 400 mg/kg exhibited mild to moderate degree centrilobular fatty and lymphocyte infiltration, regeneration of hepatocytes with prominent nucleus and very few infiltration of inflammatory cells. (Fig. 1d-1f and 2d-2f).

Carbon tetrachloride (CCl₄), a well known and most commonly used halogenated hydrocarbon belongs to the class of chemical hepatotoxins, possessing wide spectrum of hepatocellular dysfunction (decreased lipid secretion, decreased protein synthesis, loss of glycogen, and finally, hepatocellular necrosis). The toxic action of CCl₄ was found to be due to the formation of active metabolite, the trichloromethyl (CCl₃•) radical through metabolic pathways including cytochrome P₄₅₀ in the mixed-function oxidase system of the liver endoplasmic reticulum. The trichloromethyl (CCl₃•) radical which readily reacts with oxygen to form a trichloromethylperoxy radical (CCl₃O₂•) radical forms covalent bond with sulfhydryl groups of several membrane molecules like GSH leading to depletion and causes lipid peroxidation. The lipid peroxidation leads to formation of lipid peroxides, which in turn to yields products like MDA, which is known to cause loss of integrity of cell membranes and damage hepatic tissue and also create imbalance in the redox status of hepatocyte and liver lysosomal instability, which leads to leakage of serum marker enzymes. It is possible that hepatocellular damage

<table>
<thead>
<tr>
<th>Liver Antioxidant Enzymes</th>
<th>Vehicle (1 ml/kg)</th>
<th>CCl₄ (1 ml/kg)</th>
<th>Silymarin+CCl₄ (200 mg/kg)</th>
<th>HAELA+ CCl₄ (200 mg/kg)</th>
<th>HAELA+ CCl₄ (400 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA formation (nM of MDA/g of wet liver)</td>
<td>6.99±0.41</td>
<td>25.03±1.12***</td>
<td>19.16±0.62***</td>
<td>20.49±0.63***</td>
<td>18.89±0.42***</td>
</tr>
<tr>
<td>GSH (µg/g of wet liver)</td>
<td>11.72±2.56</td>
<td>1.83±0.30***</td>
<td>6.54±1.72**</td>
<td>4.88±0.79**</td>
<td>5.33±0.37**</td>
</tr>
<tr>
<td>CAT (µM of H₂O₂/g of wet tissue/min)</td>
<td>32.44±1.58</td>
<td>19.88±1.90***</td>
<td>28.53±0.80**</td>
<td>17.41±1.81</td>
<td>24.32±0.81</td>
</tr>
<tr>
<td>SOD (Units/mg of wet tissue)</td>
<td>33.96±3.52</td>
<td>15.90±2.26***</td>
<td>28.76±1.24**</td>
<td>27.88±1.84</td>
<td>30.04±4.71**</td>
</tr>
</tbody>
</table>

Table 4 — Effect of HAELA on in CCl₄ induced changes in the activities of liver antioxidant enzymes, malondialdehyde (MDA) and reduced glutathione (GSH) injury

[Values are mean ± SEM of 6 rats]

P values: *** < 0.001, CCl₄ control compared with vehicle treated group.

P values: ** < 0.01, * < 0.05, (silymarin+CCl₄) and (HAELA+CCl₄) treated groups compared with CCl₄ control group.

<table>
<thead>
<tr>
<th>Liver Antioxidant Enzymes</th>
<th>Vehicle (1 ml/kg)</th>
<th>Rifampicin (100 mg/kg)</th>
<th>Silymarin+rifampicin (200 mg/kg)</th>
<th>HAELA+ rifampicin (200 mg/kg)</th>
<th>HAELA+ rifampicin (400 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA formation (nM of MDA/g tissue)</td>
<td>3.54±1.47</td>
<td>19.32±0.89***</td>
<td>6.05±1.22**</td>
<td>12.62±3.45</td>
<td>5.98±1.46**</td>
</tr>
<tr>
<td>GSH (µg/g of wet liver)</td>
<td>8.60±0.62</td>
<td>2.80±0.84***</td>
<td>8.0±0.60**</td>
<td>5.10±0.78</td>
<td>6.87±0.68**</td>
</tr>
<tr>
<td>CAT (µM of H₂O₂/g of wet tissue/min)</td>
<td>38.83±3.44</td>
<td>15.9±2.26***</td>
<td>37.04±3.33***</td>
<td>33.11±1.31***</td>
<td>38.32±4.67***</td>
</tr>
<tr>
<td>SOD (Units/mg of wet tissue)</td>
<td>33.21±3.17</td>
<td>15.78±2.18***</td>
<td>40.46±1.85***</td>
<td>17.54±3.25</td>
<td>33.91±3.76***</td>
</tr>
</tbody>
</table>

Table 5 — Effect of HAELA on in rifampicin induced changes in the activities of liver antioxidant enzymes, malondialdehyde (MDA) and reduced glutathione (GSH) injury

[Values are mean ± SEM of 6 rats]

P values: *** < 0.001, Rifampicin control compared with vehicle treated group.

P values: ** < 0.01, * < 0.05, (silymarin+ rifampicin) and (HAELA+ rifampicin) treated groups compared with Rifampicin control group
occurs when the free radicals generation exceeds the cellular radicals scavenging capacity. Assessments of liver toxicity was done by measuring the marker enzymes viz AST, ALT, ALP and LDH, which are originally present in high concentration in the cytoplasm. When there is hepatic injury these enzymes leak into blood stream in conformity with extent of hepatotoxicity.

Similarly, the anti-tubercular drugs including rifampicin alone or in combination with other anti-TB drugs have been documented to be hepatotoxic. It was evidenced that biotransformation of rifampicin
into its active metabolite, 25-desacetyl rifampicin reduces the drug metabolizing enzymes and specifically binds to RNA polymerase which inhibits the nucleic acid and protein synthesis responsible for hepatotoxicity[29].

Glutathione (GSH) is one of the most abundant tripeptide non-enzymatic intracellular biological antioxidant[30] present in liver. It is involved in the removal of free radicals such as H_2O_2, superoxide anions and alkoxy radicals, preserving membrane

Fig. 2—Effect of HAELA on histopathological examination of rat liver in rifampicin induced liver toxicity (\times 400 H & E). (a) vehicle control treated group showing normal hepatocytes having a prominent nucleus; (b) rifampicin control treated group showing portal infiltration along with extensive degeneration and necrosis of hepatocytes; (c) silymarin (200 mg/kg) + rifampicin (100 mg/kg) treated group showing regenerating hepatocytes with no signs of necrosis and inflammation; (d) HAELA (100 mg/kg) + rifampicin (100 mg/kg) treated group showing architecture of hepatocytes with focal areas of necrosis and partly disturbed architecture with portal infiltration; (e) HAELA 200 mg/kg + rifampicin (100 mg/kg) treated group showing regenerating hepatocytes with a prominent nucleus and partly distorted architecture; (f) HAELA 400 mg/kg + rifampicin (100 mg/kg) treated group showing normal architecture of hepatocytes with prominent nucleus. No signs of necrosis and inflammation and are close to normal.
protein thiols and a substrate for glutathione peroxidase and glutathione reductase.

In the present experiments, CCl₄ and rifampicin treatment increased the activities of GSH related enzymes thereby decreasing the GSH content in liver, whereas treatment with silymarin and HAELA (200 and 400 mg/kg) able to reverse such effects. It may be understood that effect of silymarin and HAELA may be due to an initial reduction in hepatic peroxidative activities, followed by inhibition of the activities of GSH related enzymes. Aforementioned effects with silymarin and HAELA treatment finally results into restoration of GSH content in CCl₄ and rifampicin induced hepatotoxicity.

Superoxide dismutase (SOD) is a key defense enzyme and catalyzes the dismutation of superoxide anions. Catalase (CAT) is a haemeprotein that catalyses the reduction of H₂O₂ and able to prevents the tissue from reactive free oxygen and hydrorxy radicals. Decreased in SOD activity can result in the decreased removal of superoxide anions that may inactivate SOD thereby causing an inactivation of H₂O₂ scavenging enzymes. It is quite likely that administration of silymarin and HAELA to CCl₄ and rifampicin treated rats able to prevent effectively the decrease in SOD and CAT activities, which may be directly correlated to scavenging or neutralizing of radicals by silymarin or HAELA resulting in protection of these important defense enzymes.

It is suggested that, saponins in HAELA play an important role as antioxidant for prevention of oxidative hepatic damage. Furthermore, the flavonoids and saponins of HAELA may able to stabilize reactive oxygen species by reacting with them and oxidizes subsequently to more stable and less reactive radicals.

This study demonstrated that, silymarin (200 mg/kg) and HAELA (200 and 400 mg/kg) significantly prevented CCl₄ and rifampicin induced hepatotoxicity in rats.

Histoarchitectural improvement further supported by biochemical changes in liver, reduction in serum marker enzymes and augmentation of endogenous antioxidants in liver, all contributes to its hepatoprotective activity.

References

5 Kandakunta B, Rajendra A & Thingnagaling L, Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin, Food chem, 106 (2008) 85.
17 Ellman G, Tissue sulphydryl groups, Arch Biochem Biophys, 82 (1959) 70.
23 Jhon B A & Stephen Aust D, Microsomal lipid peroxidation,
24 Barber A A & Bernheim F, Lipid peroxidation, its
measurement, occurrence and significance in animal tissue,
25 Sodhi C P, Rana S F, Attri S, Mehta S, Yaiphei K & Mehta S
K, Oxidative hepatic injury of isoniazid-rifampicin in young
rats subjected to protein and energy malnutrition, Drug and
Chemical Toxicology, 21 (1998) 305.
26 Naik S R, Antioxidants and their role in biological functions:
27 Prabakan M, Anandan R & Devaki T, Protective effect of
Hemidesmus indicus against rifampicin and isoniazid
28 Saraswathy S D & Shyamala Devi C S, Modulating effect of
Liv 10, an ayurvedic formulation on antituberculosis drug
induced alteration in rat liver microxomes, Phytother Res,
29 Bowman W C & Rand M J, Textbook of Pharmacology,
(Blackwell Scientific Publications, Oxford, London), 1982,
34.
30 Meister A, New aspects of glutathione biochemistry and
transport selective alterations of glutathione metabolism,