A mild and efficient method for tetrahydropyranylation and detetrahydro-
pyranylation of alcohols and phenols by BiOClO4.xH2O (or) BiONO3

Y Thirupathi Reddy, P Narsimha Reddy, B Sunil Kumar,
N Srinivasulu & (Ms) B Rajitha*
Department of Chemistry, National Institute of Technology,
Warangal 506 004, India
E-mail: ytirupatireddy@yahoo.com
Received 2 November 2004; accepted (revised) 26 April 2005

A mild and efficient method for the protection of alcohols and
phenols as tetrahydropyrranyl ethers 3a-k and their deprotection at
room temperature using BiOClO4.xH2O (or) BiONO3 as catalyst
is described.

Keywords: Tetrahydropyranylation, detetrahydropyranylation,
alcohols, phenols, BiOClO4.xH2O, BiONO3

IPC: Int.CI.7 C 07 C, C 07 D

Tetrahydropyranylation of hydroxy groups and their
deprotection play an important role in organic
synthesis1. Tetrahydropyranyl ethers are stable under
variety of reaction conditions such as neutral and
basic media, reactions involving Grignard reagents,
lithium alkyls, redox reactions with metallic hydrides,
oxidative alkylation, acylating agents2,3 and undergo
easy deprotection under mild acidic conditions to
afford corresponding alcohols.

2H-3,4-Dihydropyran 2 (DHP) is one of the useful
reagents for the protection of hydroxy group in the
organic synthesis4. There are several catalysts reported
for the protection of hydroxy group as tetrahydro-
pyranyl ethers and their deprotection including protic
acids5, Lewis acids like polystyrene supported AlCl36,
Sc(OTf)37, In(OTf)38, I29, InCl310, ZrCl411 Lithium salts
lke LiBr12, LiBF413, LiOTf14, LiClO415, LiPF616,
CuCl217, NH4Cl18, and expansive graphite19, Clay
materials20, silicasulphuric acid21 K2CoW12O40.3H2O22,
N-bromosuccinimide23, tetrabutylammonium tribro-
mide24 etc. More recently, water is used as catalyst
and solvent in tetrahydropyranylation of alcohols25.

Though, these methods have valuable utilities, some
of them possess drawbacks including long reaction
time, poor yield, high temperature, and difficulty in
handling. Hence, still there is a need to develop mild
and efficient method for the protection of hydroxyl
group as tetrahydropropyranyl ethers and their
deprotection. In this communication, we wish to
report the use of BiOClO4.xH2O (or) BiONO3 as a
mild, efficient, and ease of commercially available
catalysts for the protection of hydroxyl group as
tetrahydropropyranyl ethers 3a-k and their deprotection
at room temperature (Scheme I).

Tetrahydropyranylation of alcohols and phenols
was done easily in the presence of catalytic amount of
BiOClO4.xH2O (or) BiONO3 in excellent yields at
room temperature. Among these two bismuth salts,
BiOClO4.xH2O is more effective catalyst. A wide
range of alcohols such as primary, secondary, tertiary,
benzylic and cyclic alcohols and phenols underwent
effective tetrahydropyranylation to yield correspond-
ing tetrahydropropyranyl ethers 3a-k (Table I) and
deprotection of tetrahydropropyranil ethers to yield
corresponding alcohols and phenols (Table II) at
room temperature.

Experimental Section

All the melting points were determined in open
capillary in liquid paraffin-bath and are uncorrected.
The purity of the compounds was checked by TLC.
IR spectra (KBr) were recorded on Shimadzu FTIR
Model 8010 Spectrometer; and 1H NMR spectra in
CDCl3 on a 300 MHz NMR spectrometer using TMS
as an internal standard. The C, H and N analysis of
the compounds was done on a Carlo Erba Model
EA1108 C, H and N elemental analyzer.

Note

A mild and efficient method for
tetrahydropyranylation and detetrahydro-
pyranylation of alcohols and phenols by BiOClO4.xH2O (or) BiONO3

Y Thirupathi Reddy, P Narsimha Reddy, B Sunil Kumar,
N Srinivasulu & (Ms) B Rajitha*
Department of Chemistry, National Institute of Technology,
Warangal 506 004, India
E-mail: ytirupatireddy@yahoo.com
Received 2 November 2004; accepted (revised) 26 April 2005

A mild and efficient method for the protection of alcohols and
phenols as tetrahydropyrranyl ethers 3a-k and their deprotection at
room temperature using BiOClO4.xH2O (or) BiONO3 as catalyst
is described.

Keywords: Tetrahydropyranylation, detetrahydropyranylation,
alcohols, phenols, BiOClO4.xH2O, BiONO3

IPC: Int.CI.7 C 07 C, C 07 D

Tetrahydropyranylation of hydroxy groups and their
deprotection play an important role in organic
synthesis1. Tetrahydropyranyl ethers are stable under
variety of reaction conditions such as neutral and
basic media, reactions involving Grignard reagents,
lithium alkyls, redox reactions with metallic hydrides,
oxidative alkylation, acylating agents2,3 and undergo
easy deprotection under mild acidic conditions to
afford corresponding alcohols.

2H-3,4-Dihydropyran 2 (DHP) is one of the useful
reagents for the protection of hydroxy group in the
organic synthesis4. There are several catalysts reported
for the protection of hydroxy group as tetrahydro-
pyranyl ethers and their deprotection including protic
acids5, Lewis acids like polystyrene supported AlCl36,
Sc(OTf)37, In(OTf)38, I29, InCl310, ZrCl411 Lithium salts
lke LiBr12, LiBF413, LiOTf14, LiClO415, LiPF616,
CuCl217, NH4Cl18, and expansive graphite19, Clay
materials20, silicasulphuric acid21 K2CoW12O40.3H2O22,
N-bromosuccinimide23, tetrabutylammonium tribro-
mide24 etc. More recently, water is used as catalyst
and solvent in tetrahydropyranylation of alcohols25.

Though, these methods have valuable utilities, some
of them possess drawbacks including long reaction
time, poor yield, high temperature, and difficulty in
handling. Hence, still there is a need to develop mild
and efficient method for the protection of hydroxyl
group as tetrahydropropyranyl ethers and their
deprotection. In this communication, we wish to
report the use of BiOClO4.xH2O (or) BiONO3 as a
mild, efficient, and ease of commercially available
catalysts for the protection of hydroxyl group as
tetrahydropropyranyl ethers 3a-k and their deprotection
at room temperature (Scheme I).

Tetrahydropyranylation of alcohols and phenols
was done easily in the presence of catalytic amount of
BiOClO4.xH2O (or) BiONO3 in excellent yields at
room temperature. Among these two bismuth salts,
BiOClO4.xH2O is more effective catalyst. A wide
range of alcohols such as primary, secondary, tertiary,
benzylic and cyclic alcohols and phenols underwent
effective tetrahydropyranylation to yield correspond-
ing tetrahydropropyranyl ethers 3a-k (Table I) and
deprotection of tetrahydropropyranil ethers to yield
corresponding alcohols and phenols (Table II) at
room temperature.

Experimental Section

All the melting points were determined in open
capillary in liquid paraffin-bath and are uncorrected.
The purity of the compounds was checked by TLC.
IR spectra (KBr) were recorded on Shimadzu FTIR
Model 8010 Spectrometer; and 1H NMR spectra in
CDCl3 on a 300 MHz NMR spectrometer using TMS
as an internal standard. The C, H and N analysis of
the compounds was done on a Carlo Erba Model
EA1108 C, H and N elemental analyzer.
General procedure for tetrahydropyranylation of alcohols and phenols. BiOClO$_4$·xH$_2$O (or) BiONO$_3$ (0.1 mmole) was added to a solution of alcohol 1 (1 mmole) and DHP 2 (1 mmole) in dichloromethane (20 mL). The mixture was stirred at room temperature for a specific period of time (Table I). The progress of the reaction was monitored by TLC. After disappearance of the starting material, the catalyst was filtered and solvent was evaporated under reduced pressure. The residue was diluted with water (10 mL) and extracted twice with ether (2×20 mL). Separated organic layer was dried over Na$_2$SO$_4$. Evaporation of solvent, followed by column chromatography (ethyl acetate-petroleum ether; 2:8) furnished the desired tetrahydropyranyl ethers 3a-k.

General procedure for depyranylation of tetrahydropyranyl ethers of alcohols and phenols.

BiOClO$_4$·xH$_2$O (or) BiONO$_3$ (0.1 mmole) was added to a solution of tetrahydropyranyl ether (1 mmole) in methanol (20 mL). The mixture was stirred at room temperature for a specific period of time (Table II). The progress of the reaction was monitored by TLC. After disappearance of the starting material, the catalyst was filtered and solvent was evaporated under reduced pressure. The residue was diluted with water (10 mL) and extracted twice with ether (2×20 mL).

Table I — BiOClO$_4$·xH$_2$O (or) BiONO$_3$-catalysed efficient synthesis of tetrahydropyranyl ethersb 3a-k from various alcohols and phenols

<table>
<thead>
<tr>
<th>Alcohols/phenols</th>
<th>Product</th>
<th>BiOClO$_4$·xH$_2$O</th>
<th>BiONO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min)</td>
<td>Yield (%)a</td>
<td>Time (min)</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>25</td>
<td>96</td>
<td>40</td>
</tr>
<tr>
<td>4-Chlorobenzyl alcohol</td>
<td>30</td>
<td>92</td>
<td>45</td>
</tr>
<tr>
<td>4-Methoxybenzyl alcohol</td>
<td>35</td>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>Phenol</td>
<td>30</td>
<td>90</td>
<td>55</td>
</tr>
<tr>
<td>4-Methoxyphenol</td>
<td>25</td>
<td>92</td>
<td>55</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>30</td>
<td>95</td>
<td>45</td>
</tr>
<tr>
<td>2-Propanol</td>
<td>30</td>
<td>92</td>
<td>40</td>
</tr>
<tr>
<td>2-Methyl-2-propanol</td>
<td>40</td>
<td>95</td>
<td>45</td>
</tr>
<tr>
<td>Cyclohexanol</td>
<td>25</td>
<td>94</td>
<td>45</td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>28</td>
<td>92</td>
<td>50</td>
</tr>
<tr>
<td>1-Menthol</td>
<td>30</td>
<td>90</td>
<td>55</td>
</tr>
</tbody>
</table>

aYields refer to pure products and all products were characterized by comparison of their physical and spectral data with those of authentic samples.

Table II — BiOClO$_4$·xH$_2$O (or) BiONO$_3$-catalysed efficient deprotection of tetrahydropyranyl ethersb 3a-k

<table>
<thead>
<tr>
<th>Alcohols/phenols</th>
<th>Product</th>
<th>BiOClO$_4$·xH$_2$O</th>
<th>BiONO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min)</td>
<td>Yield (%)a</td>
<td>Time (min)</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>45</td>
<td>94</td>
<td>50</td>
</tr>
<tr>
<td>4-Chlorobenzyl alcohol</td>
<td>40</td>
<td>93</td>
<td>55</td>
</tr>
<tr>
<td>4-Methoxybenzyl alcohol</td>
<td>45</td>
<td>91</td>
<td>50</td>
</tr>
<tr>
<td>Phenol</td>
<td>55</td>
<td>95</td>
<td>60</td>
</tr>
<tr>
<td>4-Methoxyphenol</td>
<td>50</td>
<td>92</td>
<td>55</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>55</td>
<td>94</td>
<td>50</td>
</tr>
<tr>
<td>2-Propanol</td>
<td>45</td>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>2-Methyl-2-propanol</td>
<td>40</td>
<td>93</td>
<td>45</td>
</tr>
<tr>
<td>Cyclohexanol</td>
<td>35</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>55</td>
<td>92</td>
<td>60</td>
</tr>
<tr>
<td>1-Menthol</td>
<td>50</td>
<td>91</td>
<td>55</td>
</tr>
</tbody>
</table>

bAll the tetrahydropyranyl ethers are known compounds.
Evaporation of solvent, followed by column chromatography (ethyl acetate-petroleum ether; 2:8) furnished the pure alcohols.

Acknowledgement

The authors are thankful to the UGC, New Delhi for financial assistance and to the Director, IICT, Hyderabad for 1H NMR and mass spectral analysis.

References