Two new flavonoids from *Andrographis macrobotrys*

B Anil Kumar Reddy, M Vijaya Bhaskar Reddy, D Gunasekar, M Marthanda Murthy, C Caux & B Bodo

Natural Products Division, Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, India
E-mail: duvvurusekarg@rediffmail.com

Indian Institute of Chemical Technology, Hyderabad 500 007, India

Laboratoire de Chimie des Substances Naturelles ESA 8041 CNRS, Museum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France

Received 15 September 2004; accepted (revised) 2 February 2005

Two new flavonoids, 5,7,8,2′-tetramethoxyflavanone 1 and 2′-hydroxy-2,3,4′-trimethoxychalcone 3, together with three known flavones, 5-hydroxy-7-methoxyflavone 2, 5,2′,6′-trihydroxy-7-methoxyflavone 4 and 5,7,2′,6′-tetrahydroxyflavone 5 have been isolated from the whole plant of *Andrographis macrobotrys*. The structures of the new compounds 1 and 3 have been established using extensive 2D NMR and ESI-MS/MS studies.

Keywords: tetramethoxyflavanone, trimethoxychalcone, methoxyflavone, *Andrographis macrobotrys*

IPC: Int.Cl.7 A 61 K 35/00

Andrographis macrobotrys Nees (Acanthaceae) is a pubescent herb found widely in Western Ghats, Anamalais, Pulneys and hills of Travancore, South India. In continuation of our investigations on *Andrographis* species, we examined the whole plant of *A. macrobotrys* and report herein the isolation and structure elucidation of two new flavonoids 1 and 3, besides three known flavones 2, 4 and 5.

Results and Discussion

Compound 1, isolated as a colourless solid, showed [M + H]^+ peak at m/z 345.1373 in the positive ESITOFMS corresponding to the molecular formula C_{19}H_{20}O_{6}. This was corroborated by the 13C NMR spectrum which showed 19 carbon resonances. The UV absorption maxima of 1 in MeOH at 262 and 316 (sh) nm and negative ferric chloride test suggested that compound 1 was a non-phenolic flavanone.

The 1H NMR spectrum of 1 showed three characteristic signals for H-2, H-3ax and H-3eq at δ 5.76 (1H, dd, J = 12.5, 3.2 Hz), 2.92 (1H, dd, J = 16.7, 12.5 Hz) and 2.83 (1H, dd, J = 16.7, 3.2 Hz) respectively, indicating that 1 had a flavanone skeleton. It also showed signals for four aromatic methoxyl groups at δ 3.79, 3.80, 3.90 and 3.92. The ESI-MS/MS fragmentation of [M + H]^+ ion (m/z 345.1) yield a diagnostic RDA fragment ion at m/z 211.0 (13A^+ indicating the presence of three methoxyl groups in ring-A. A sharp one-proton singlet at δ 6.11 correlating with the carbon at δ 89.2 in the HSQC spectrum was assigned to H-6 as it showed HMBC correlations with C-5 (δ 157.8), C-7
Thus, the structure of compound

derivative. A bathochromic shift of 45 nm in band

hydroxyl in doublets (\(\delta\) 6.95, 7.03, 7.30 and 7.59) showed HMBC correlation with H-6 (\(\delta\) 6.11) in the NOESY spectrum (Figure 1). The third methoxyl group at \(\delta\) 3.79 was placed at C-8 as these protons showed HMBC correlation with this carbon at \(\delta\) 130.7 and a strong NOE correlation with H-6' (\(\delta\) 7.59). The methoxyl group at \(\delta\) 3.80 was placed at C-2' as it showed two strong NOE correlations with H-2 (\(\delta\) 5.76) and H-3' (\(\delta\) 6.95) in the NOESY spectrum. The relative stereochemistry at C-2 was shown to be \(S\) as it showed positive and negative cotton effects at 317 and 262 nm, respectively in its CD spectrum. Thus, the structure of compound 1 was elucidated as (2S)-5,7,8,2'-tetramethoxyflavanone. The isolation of compound 1 constitutes a rare case of occurrence of a flavanone with 2'-oxygenation.

Compound 3, obtained as yellow needles, showed a protonated molecular ion peak at m/z 315.1206 in the positive ESI-TOFMS corresponding to the molecular formula C18H18O5. This was corroborated by the decoupled \(^1^3\)C NMR spectrum, which showed 18 carbon resonances. The UV absorption maxima of 3 in MeOH at 252 (sh), 310 and 358 nm and the color reactions suggested that 3 was a chalcone derivative. A bathochromic shift of 45 nm in band I absorption maximum with AlCl\(_3\) and AlCl\(_3\)/HCl and a downfield signal at \(\delta\) 13.40 in the \(^1\)H NMR spectrum of 3 revealed the presence of a chelated hydroxyl in 3.

The \(^1\)H NMR spectrum of 3 showed a pair of AB doublets (\(J = 15.7\) Hz) at \(\delta\) 7.93 and 8.07 consistent with trans olefinic protons of a chalcone moiety. It also showed signals for three methoxyl groups at \(\delta\) 3.82 (6H) and 3.79 (3H). The ESI-MS/MS fragmentation\(^{20}\) of [M + H]\(^+\) ion (m/z 315.1) yields a diagnostic fragment ion at m/z 151.0 (\(^{13}\)A\(^-\)) indicating the presence of a hydroxyl and a methoxyl group in ring-A. Therefore the remaining two methoxyl groups in 3 should be present in ring-B. The signals at \(\delta\) 6.49 (1H, d, \(J = 2.4\) Hz), 6.54 (1H, dd, \(J = 9.0, 2.4\) Hz) and 8.21 (1H, d, \(J = 9.0\) Hz) correspond to 3', 5' and 6' protons, respectively of a 2', 4'-disubstituted chalcone moiety. The methoxyl group at \(\delta\) 3.82 was placed at C-4' as it showed \(^3\)J correlation with C-4' at \(\delta\) 166.0 in the HMBC spectrum and two strong NOE correlations with H-3' (\(\delta\) 6.49) and H-5' (\(\delta\) 6.54) in the NOESY spectrum (Figure 2). The \(\beta\)-carbon in C-2 unsubstituted chalcones usually resonates around 144 (+2) ppm. However, in compound 3 it appeared at \(\delta\) 137.9, which is unusually upfield, indicating C-2 oxygenation in ring-B. The methoxyl group at \(\delta\) 3.82 was placed at C-3, as it showed \(^3\)J correlation with this carbon at \(\delta\) 152.7 and a strong NOE correlation with H-4 (\(\delta\) 7.08) in the NOESY spectrum. The three aromatic proton signals at \(\delta\) 7.08, 7.12 and 7.65 in the \(^1\)H NMR spectrum of 3 were assigned to H-4, H-5 and H-6, respectively. The methoxyl group at \(\delta\) 3.79 was placed at C-2 based on two strong NOE correlations observed for the methoxyl protons with H-\(\beta\) (\(\delta\) 8.07) and H-8 with H-6 (\(\delta\) 7.65) in the NOESY spectrum. This assignment was further evidenced by the appearance of C-2 methoxyl carbon at \(\delta\) 61.0, which is characteristic of a di-ortho-substituted methoxyl group. Thus, the structure of compound 3 was elucidated as 2'-hydroxy-2,3,4'-trimethoxychalcone.
Incidentally, the isolation of compound 3 constitutes the first report of the natural occurrence of a chalcone with 2,3-dioxygenation in the B-ring.

The structures of known compounds, 2, 4 and 5 were established by comparison of their spectral data with literature values7,23,24.

Experimental Section

General. Melting points were determined on a Kofler hot stage apparatus and are uncorrected. The CD spectrum was recorded in MeOH at 25 °C on a JASCO J 715 spectropolarimeter. UV spectra were obtained on a Shimadzu UV-240 spectrophotometer. IR spectra were recorded in KBr discs on a Perkin-Elmer 241 polarimeter. Optical rotations were measured in MeOH at 25 °C with a Perkin-Elmer 283 double beam spectrophotometer. Column chromatography (CC) was performed on Acme silica gel (100-200 mesh). Chromatographic cracking (CC) was performed on Acme silica gel (100-200 mesh).

Plant material. The whole plant of *A. macrobotrys* Nees was collected from Anamalai hills of W.Ghats, South India in December 2001. A voucher specimen (DG-007) was deposited in the Herbarium of the Department of Botany, Sri Venkateswara University, Tirupati, India.

Extraction and isolation

The air-dried and powdered whole plant of *A. macrobotrys* (2 kg) was successively extracted with *n*-hexane, Me2CO and MeOH. The air-dried and powdered whole plant of *A. macrobotrys* (6H, s, OMe-3, 4′), 3.92 (3H, s, OMe-7), 3.90 (3H, s, OMe-5), 3.80 (3H, s, OMe-2′), 3.79 (3H, s, OMe-8), 2.92 (1H, dd, J = 16.7, 12.5 Hz, H-3eq), 2.83 (1H, dd, J = 16.7, 3.2 Hz, H-2), 3.92 (3H, s, OMe-7), 3.90 (3H, s, OMe-5), 3.80 (3H, s, OMe-2′), 3.79 (3H, s, OMe-8), 2.92 (1H, dd, J = 16.7, 12.5 Hz, H-3eq), 2.83 (1H, dd, J = 16.7, 3.2 Hz, H-2), 3.92 (3H, s, OMe-7), 3.90 (3H, s, OMe-5), 3.80 (3H, s, OMe-2′), 3.79 (3H, s, OMe-8), 2.92 (1H, dd, J = 16.7, 12.5 Hz, H-3eq), 2.83 (1H, dd, J = 16.7, 3.2 Hz, H-2).

5,7,8,2′-Tetramethoxyflavanone 1: Colourless solid (CHCl3), m.p. 155-57°C; [α]25D = 19.2° (c 0.18, MeOH); UV (MeOH) (log ε): 262 (4.49), 316 (sh) (4.33) nm; IR (KBr): 2859 (-OMe), 1640 (>C=O), 1580, 1219, 772 cm⁻¹, CD (c 0.4, MeOH): [θ]315 + 0.07, [θ]262 - 0.26; 1H NMR (CDCl3): δ 7.59 (1H, dd, J = 7.52, 1.5 Hz, H-6′), 7.30 (1H, ddd, J = 7.5, 7.5, 1.5 Hz, H-4′), 7.03 (1H, ddd, J = 7.5, 7.5, 1.5 Hz, H-5′), 6.95 (1H, dd, J = 7.5, 1.5 Hz, H-3′), 6.11 (1H, s, H-6), 5.76 (1H, dd, J = 12.5, 3.2 Hz, H-2), 3.92 (3H, s, OMe-7), 3.90 (3H, s, OMe-5), 3.80 (3H, s, OMe-2′), 3.79 (3H, s, OMe-8), 2.92 (1H, dd, J = 16.7, 12.5 Hz, H-3eq), 2.83 (1H, dd, J = 16.7, 3.2 Hz, H-2), 3.92 (3H, s, OMe-7), 3.90 (3H, s, OMe-5), 3.80 (3H, s, OMe-2′), 3.79 (3H, s, OMe-8), 2.92 (1H, dd, J = 16.7, 12.5 Hz, H-3eq), 2.83 (1H, dd, J = 16.7, 3.2 Hz, H-2).

Acknowledgement

The authors thank Dr J P Brouard, MNHN, Paris, France for providing mass spectral data and the Director, CCMB, Hyderabad, India for providing CD spectral data.
References
