Human Stones: Dissolution of calcium phosphate and cholesterol by edible plant extracts and bile acids

Ishwar Das* and Smriti Verma

Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009

Received 30 October 2007; revised 15 January 2008; accepted 17 January 2008

Tri-calcium phosphate (TCP) and cholesterol are major constituents of human stones. Dissolution of TCP by extracts of kulfa (Portulaca oleracea), pathari (Trianthema monogyna), tomato (Lycopersicon esculantum) and grape (Vitis vinifera) has been studied by monitoring Ca content in the filtrate by flame photometer. Grape extract is found to be most effective for dissolution of TCP amongst other extracts studied. All these extracts contain carbohydrate, which interacts with Ca to form a soluble complex. Dissolution of cholesterol has been studied in extracts of kulfa, pathari, tomato and grape and in alcoholic solutions of ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA). In dissolved portion, cholesterol was estimated by measuring optical density at $\lambda_{\text{max}} = 402$ nm using UV-visible spectrophotometer. Amongst all these extracts, tomato is found to be most effective for dissolution of cholesterol. UDCA is found to be more effective in dissolving cholesterol than CDCA.

Keywords: Biological apatite, Biomineralization, Cholesterol, Human stones, Tri-calcium phosphate

Introduction

Calcium phosphate and calcium oxalate are most common crystalline constituents of human urinary stones. Importance of aggregation in calculus formation is that it constitutes the most effective mechanism to increase the size of particle composition and structure of urinary stone1. Using 13C and 31P MAS NMR spectroscopy, Bak et al2 detected and quantified calcium oxalate, uric acid struvite and calcium phosphate that closely resemble brushite $\text{CaHPO}_4 \cdot 2\text{H}_2\text{O}$ and calcium hydroxyapatite $\text{Ca}_{10} (\text{PO}_4)_6 (\text{OH})_2$. Chemical composition of 36 calculi was studied by X-ray diffraction analysis of their powder, out of which 19 stones had a homogeneous composition3. About 80% of gallstones are predominantly composed of cholesterol. Despite considerable progress in medical therapy, there is no satisfactory drug to treat kidney stones. Thus, most patients try to find an alternative therapy for many diseases including lithiiasis4. Although dissolution and inhibition of calcium oxalate in presence of α-keto glutaric acid5, amino acid6, polyhydroxy carboxylic acid7 have been studied, dissolution of tri-calcium phosphate (TCP) and cholesterol by edible plant and fruit extracts such as kulfa, pathari, tomato, grape and bile acids have not been reported so far.

Kulfa8 (Portulaca oleracea L.) is a source of free oxalic acid, alkaloids, omega 3- fatty acids, flavonoids (cyanin), cumarines etc. Pathari8 (Trianthema monogyna L.) is a naturally growing herb of northeastern UP. Tomato8 (Lycopersicon esculantum L.) is rich in lycopene9. Grape8 (Vitis vinifera L.) skin contains resveratrol10 (50-100 μg/g). Chenodeoxycholic acid (CDCA) and Ursodeoxycholic acid (UDCA) are naturally occurring bile acids that may be given orally for gall stone dissolution and reduction in cholesterol saturation in the bile. CDCA is primary bile acid whereas UDCA is secondary bile acid11.

This study presents dissolution of TCP and cholesterol by edible plant extracts of pathari (T. monogyna $L.$), kulfa (P. oleracea $L.$), grape (V. vinifera $L.$) and tomato (L. esculantum $L.$). Dissolution kinetics of cholesterol in bile acids has also been studied.

Materials and Methods

Cholesterol (Fluka), TCP (s.d.fine-chem Ltd), UDCA (Fluka), CDCA (Fluka), and leaves of P. oleracea and T. monogyna and fruits of V. vinifera and L. esculentum were used.
Preparation of Extracts and Dissolution of TCP and Cholesterol

Fresh and washed leaves of kulfa and pathari, and fruits of tomato and grape were crushed with distilled water (1:1 w/v) using mixer and grinder. Crushed material was squeezed, filtered by Whatmann filter paper and used as such.

Dissolution of TCP and cholesterol has been studied in different extracts by measuring [Ca] or [cholesterol] at different experimental conditions.

Estimation of [Ca] by Flame Photometric Studies

Dissolution of TCP in aqueous extracts of leaves and fruits were studied by measuring calcium content in filtrate at different experimental conditions using flame photometer, attached with Ca filter (Tosniwal, India). TCP (10 mg) was mixed with distilled water (10 ml) containing additives in different volume in different test-tubes, wrapped with parafilm, stirred thoroughly and kept for one week. Ca content in each filtrate was determined. (Fig. 1, Table 1).

Estimation of [Cholesterol] by UV-visible Spectrophotometer

Cholesterol concentration was estimated by measuring optical density at $\lambda_{\text{max}} = 402$ nm using UV-visible spectrophotometer. Optical density was measured at different concentrations of cholesterol and calibration curve was obtained (Fig. 2). Cholesterol concentration was estimated by measuring absorption and using the calibration curve. Dissolution kinetics of cholesterol was studied in extracts (Fig. 3) of kulfa, pathari, grape and tomato and bile acids (Fig. 4).

Results and Discussion

Dissolution of TCP in extracts of edible leaves of kulfa and pathari, and fruits of grape and tomato have been studied by monitoring Ca content in the filtrate. [Ca] content in dissolved portion increased with increasing concentration of extracts, linearly in case of grape extract while in case of other extracts equation $[\text{Ca}]^2 = mV + c$ is obeyed as evident by correlation coefficient values (Table 1); m and c are slope and intercept respectively and V is volume of extract (Fig. 1). For the dissolution of TCP, grape extract is found to be most effective amongst other extracts studied as grape> kulfa>pathari>tomato. All these extracts contain carbohydrate, which interacts with calcium ion to form a soluble complex12 as

$$\text{Calcium phosphate} = \text{Ca}^{2+} + \text{PO}_4^{3-}$$

<table>
<thead>
<tr>
<th>Extract</th>
<th>Equation obeyed</th>
<th>Slope m</th>
<th>Intercept c</th>
<th>Correlation coefficient R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulfa</td>
<td>$[\text{Ca}]^2 = mV + c$</td>
<td>584.14</td>
<td>-56.64</td>
<td>0.995</td>
</tr>
<tr>
<td>Grape</td>
<td>$[\text{Ca}] = mV + c$</td>
<td>15.29</td>
<td>0.643</td>
<td>0.991</td>
</tr>
<tr>
<td>Pathari</td>
<td>$[\text{Ca}]^2 = mV + c$</td>
<td>493.72</td>
<td>-58.57</td>
<td>0.982</td>
</tr>
<tr>
<td>Tomato</td>
<td>$[\text{Ca}]^2 = mV + c$</td>
<td>176.86</td>
<td>-10.00</td>
<td>0.9924</td>
</tr>
</tbody>
</table>
Ca\(^{++}\) + Carbohydrate → Ca\(^{++}\) —Carbohydrate complex
Ca\(^{++}\) + Protein → Ca\(^{++}\) —Protein complex

Cholesterol insoluble in water is held in solution by detergent action of bile acids and phospholipids, with which it forms micelles. There was no induction period in case of tomato extract, however in other cases sigmoidal curves with induction period were observed. Induction period was found to increase as: Tomato < Trianthema monogyna < grape < kulfia. Among all these extracts, tomato is found to be most effective for the dissolution of cholesterol.

UDCA is found to be more effective in dissolving cholesterol than CDCA (Fig. 4). It increases linearly with increase in bile acid concentration obeying the relation

\[
[\text{Cholesterol}] = m [\text{Bile acid}] + c
\]

where m and c are slope and intercept respectively.

Conclusions
Kulfia, pathari, grape and tomato were found effective for dissolution of TCP. These biofunctional plant materials are enriched with bioactive molecules, which play major role in dissolution of TCP and cholesterol. Grape extract is found to be most effective in dissolution of TCP among all extracts. All extracts contain carbohydrate, which interact with Ca\(^{++}\) to form a soluble complex. Tomato extract was found to be most effective in dissolving cholesterol among all extracts. Dissolution of cholesterol increases with increasing concentration of bile acid.

Acknowledgements
Authors thank UGC, New Delhi for supporting investigation. Authors also thank Prof K D S Yadava, Head, Chemistry Department DDU Gorakhpur University, Gorakhpur for providing necessary facilities, and Dr V N Pandey and Dr Shoeb Ahmad Ansari for helpful discussion.

References

