The origin of fish culture in India probably dates back to 2000 years. Perhaps, fishery activity started when the human settlement moved away from the riverbanks to the hinterland. During monsoon season, the inundated paddy fields and low-lying areas gave birth to today’s aquaculture. The natural seed of fish got trapped after water receded which eventually led to the idea of “trapping and holding” of fish seed and raising them to the table size. Probably this is the milestone of the first innovation in aquaculture.

As the days went by, the Indian fish farmers practice their own indigenous technology as a common practice through natural resource management. The close and intimate observation of farmers through their age-old practices has developed the expertise of acquiring knowledge in aquatic ecosystem in particular. Admittedly, the multifarious knowledge and skill possessed by local people can substantially contribute to productive efforts and endeavors. Scientific attitude to this indigenous technologies of the farmers are yet to be exposed. The viability of indigenous technologies failed to approach short and long-term perspective. Under this context the present study was undertaken to document indigenous technology common among the fish farming communities.

Indigenous knowledge is traditional type of innovation by the farmers that is stored in peoples’ memories and activities and it is expressed in the form of stories, songs, folklore, proverbs, dances, myths, cultural values, beliefs, rituals, community laws, local language and taxonomy, agricultural practices, equipment materials, plant species and animal breeds.

Farmers’ innovation is based on their indigenous knowledge. The indigenous knowledge is the accumulated knowledge, skills and technology of the local farmer derived from the interaction of ecosystem. Since the evolution of mankind, man has been entrusted with resources and location specific avenues like agriculture, fishery, dairy, animal husbandry, indigenous, medicine and weather study, etc.

In rural areas, traditionally associated technical knowledge of fish farmers followed from generation to generation to cope up with different situational constraints. The tested and proven innovations of our ancestors needs to be valued, validated and blended with new technological support.

Understanding of the dimension of technologies of the fish farming helps in asserting the degree and directional change through formal research. Thus, recording of indigenous innovation becomes important which would otherwise be obsolete and lost soon without recognition in future.

Farmers’ innovation has little or no cost, readily available, socially acceptable, economically viable, and sustainable, involve minimum risk to rural farmers and producers, and are widely believed to conserve resources.
The use of farmers’ innovation, skills and wisdom promotes active community involvement because people depend more on each other. The farmers’ innovations encourage transparency and accountability.

Methodology

The study was conducted in South 24 Parganas district of West Bengal. Within the district, two blocks namely, Namkhana and Kakdwip were selected. A total 20 hatchery owner and 70 traditional farmers were selected from both the blocks. The population of the study was selected by using simple random sampling technique without replacement. Data were collected from the respondents through personal interview using semi-structured schedule (Table 1). The conclusions were drawn from the overall response of the respondents belonging to tribal and other backward communities.

Table 1—Farmers’ Innovations in aquaculture in Namkhana and Kakdwip blocks, West Bengal

<table>
<thead>
<tr>
<th>Items</th>
<th>Methods</th>
<th>Rationality</th>
<th>Purpose</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algae (Jahanesbaptistia sp.) control for proper growth and development of Bagda (Penaeus monodon Fab.) fish.</td>
<td>The growth of algae (Jahanesbaptistia sp.) is fast and covers the vast water body. It creates two separate layers in the pond and Bagda bound to stay in lower layer of in the pond. In the restricted portion, they are grown. Due to increase in population of Bagda, the space becomes limited and insect and disease infestation is occurred. The algae (Jahanesbaptistia sp.) are controlled, manually by uprooting the weed with the help of bamboo poles with toothed prongs or coir rope.</td>
<td>For creating greater space and minimize nutrient loss</td>
<td>To eradicate aquatic weed from the water bodies for higher production</td>
<td>Medium farmers</td>
</tr>
<tr>
<td>Use of banana logs in pond (Figs. 1,2)</td>
<td>Banana logs are cut into pieces and immersed into pond water.</td>
<td>Banana plant cell helps in increasing pH of the pond water through their alkaline secretion</td>
<td>To minimize protozoan disease and worm of fish</td>
<td>Small farmers</td>
</tr>
<tr>
<td>Pala and bamboo logs (Figs. 3,4)</td>
<td>Pala and bamboo logs are placed in the pond for resting of fish and controlling lice of fish</td>
<td>Rubbing of body with Pala and bamboo log, lice are removed from the body</td>
<td>To manage lice</td>
<td>Marginal farmers</td>
</tr>
<tr>
<td>Broken catechu nut extract</td>
<td>In the hatching pool, the extract of water-immersed catechu nut is used in proper dose to make the eggshell hard</td>
<td>It helps in shell hardening and prevents immature release of hatchlings</td>
<td>To obtain higher hatching rate</td>
<td>Hatchery owners</td>
</tr>
<tr>
<td>Indigenous fishing instrument Polo</td>
<td>The instrument, made up of bamboo and thread is cylindrical in shape. Both top and bottom sides are open. Top circle is smaller than bottom. Bottom portion is inserted into the soil. Fishing is completed inside the Polo</td>
<td>Due to insertion of the lower portion into soil, fish are bound by the cylindrical structure from the top portion. Trapped fishes are taken out from the top portion</td>
<td>Both bamboo and thread are easily available. Using it, fishes are captured in low water raising area</td>
<td>Small and medium size farmers</td>
</tr>
<tr>
<td>Garlic (2kg)+ Salt (2kg) +CuSO4 (20gms)+KmO4 (20gms) (Figs. 5,6)</td>
<td>Ingredients made into paste, is mixed in 30-50l liter of water and sprayed over pond water of 0.133ha pond</td>
<td>It contains antimicrobial compound</td>
<td>Control of EUS disease</td>
<td>Hatchery owners</td>
</tr>
<tr>
<td>Eggs ingredients</td>
<td>Eggs are applied into brood stock pond</td>
<td>It contains protein</td>
<td>It advances maturation of brooders</td>
<td>Hatchery owners</td>
</tr>
</tbody>
</table>
Results

In order to understand the hatchery owner and traditional fish farmer clearly and comprehensively for this study, some of the personal, socio-economic, communicational characteristics were undertaken. The majority of the fish farmers and hatchery owners were poorly educated, having nuclear family and medium sized family, low family educational status, poor land holding, and poor economic status. The socio-economic condition of hatchery owner was found to be comparatively better than the traditional fish farmers.

Conclusion

The above mentioned indigenous technology was found to be viable in combating the problems of the aquatic systems. Farmers knowingly or unknowingly employed such techniques in effective management of such systems. The scientific approach of these technologies can usher a new era in modern fish farming system employing these indigenous knowledge.

References

1. National Commission on Agriculture, Government of India, Ministry of Agriculture and Irrigation, New Delhi, part VIII (Fisheries), 1976.