Synthesis, characterization and biological activity of triazole derivatives of cinitapride

Gudipati Srinivasulu, Kudavalli Jaya Satyanarayana, Padi Pratap Reddy*, Pragathi Hegde & Ranjan Chakrabarti#

*Department of Research and Development, Dr Reddy’s Laboratories Limited, Integrated Product Development
Plot No. 9/A, Phase III, IDA Jeedimetla, Hyderabad 500 055, Andhra Pradesh, India
Email: prataprp@drreddys.com

#Discovery Research, Bollaram Road, Miyapur, Hyderabad 500 050, Andhra Pradesh, India

Received 11 July 2005; accepted (revised) 22 May 2006

New triazole analogues of cinitapride are synthesized by diazotization induced hetero aromatization. Isomers resulted from the alkylation of triazole derivative are separated and one of them is synthesized in an unambiguous route. Anti-ulcer activity of all the derivatives is studied in mice.

Keywords: Cinitapride, triazole, diazotisation, methylation, prokinetic

IPC Code: Int. Cl.: C07D

4-Amino-N-[1-(3-cyclohexen-1-yl-methyl)-4-piperidyl]-2-ethoxy-5-nitrobenzamide (+)-tartrate (cinitapride hydrogen tartrate) is a prokinetic benzamide derivative stimulating gastrointestinal motility and is a commercially successful anti-ulcerative active pharmaceutical ingredient.1,2. Reported general method for the preparation of this compound involved condensation of 4-amino-2-ethoxy-5-nitrobenzoic acid with 4-amino-1-(3-cyclohexen-1-yl-methyl)piperidine in the presence of triethylamine and ethyl chloroformate and subsequent salt formation with L(+)+tartric acid.

In continuation of our study of imidazole analogues of cinitapride, herein we report the study of triazole analogues of cinitapride. The 1,2,3-triazole ring is a pharmacophore present in several drugs, e.g. anastrozole (antineoplastic), estazolam, triazolam (sedative, hypnotic), ribavirin (antiviral), dapiprazole (antiglaucoma; miotic), ceftriaxone (antibacterial), dometmizole (ultraviolet-screen). The study of the impact of the presence of triazole moiety in the cinitapride skeleton on its anti-ulcerative properties is undertaken now. Synthetic chemistry of 1,2,3-benzotriazole is well documented in literature.12-14. The traditional method of diazotisation induced hetero aromatisation employing sodium nitrite in acetic acid is used now.

Results and Discussion

To synthesize the desired triazole derivative of cinitapride, 4-amino-N-[1-(3-cyclohexen-1-yl-methyl)-4-piperidyl]-2-ethoxy-5-nitro benzamide 1 was chosen as the starting material. Thus, catalytic hydrogenation of 1 using Pd/C resulted in the reduction of both nitro group and cyclohexenyl double bond leading to 2a (ref. 4). Diazotization of compound 2a provided the corresponding triazole cinitapride derivative 3a (Scheme I). IR spectrum (cm-1) of compound 3a showed a broad NH peak (3383) besides carbonyl (1655) and N=N (1623) absorptions. 1H NMR spectrum (δ, DMSO-d6) is characterized by the presence of ethoxy (1.0, t, 3H, CH₃), (4.1, q, 2H, OCH₂), triazole NH (9.8, s, 1H), aromatic (8.1, s, 1H; 9.8, s, 1H), amide NH (8.4, s, 1H) and aliphatic protons RN-CH-R (3.2, m, 1H), RN-CH₂-R (2.2-2.4, m, 4H), CH₂-CH₆H₁₂-N (1.4-1.6, m, 4H), N-CH₂-C₆H₁₁ (0.9-1.2, m, 11H) signals.

The compound 3a was derivatised to provide methyl, cyclohexenyl methyl, acetyl, benzyl, and benzoyl derivatives 4a-4e by reacting with corresponding electrophilic reagents. All the compounds are fully characterized based on IR, 1H NMR, mass spectral data and elemental analysis (Table I).

Raney-nickel reduction of 1 proceeded in a controlled manner with reduction of only nitro group leading to diamino derivative 2b, which was subsequently converted into corresponding triazole derivative 3b on treatment with NaNO₂/AcOH (Scheme I).

Methylation of 3a using methyl iodide provided a mixture of isomers in 60 : 40 ratio. This mixture was separated using silica column eluting with ethyl acetate and hexanes mixture. These isomers were
independently characterized based on their IR, 1H, 13C NMR, 2D NMR (COSY) and mass spectral data. Further, one of these isomers, 4a was independently synthesized by an unambiguous synthetic route starting from 1 (Scheme II). Methylation of 1 using methyl iodide and subsequent catalytic hydrogenation of resulted compound 5 yielded 5-amino-N-(1-(cyclohexylmethyl)piperidin-4-yl)-4-(cyclohexylmethylamino)-2-ethoxybenzamide 6. Hetero- aromatisation of 6 through diazotization employing sodium nitrite in acetic acid yielded compound 4a which was found to be identical with one of the isomers obtained from direct methylation of triazole derivative 3a, thus confirming its assigned structure in an unambiguous manner. M+1 peak at m/e 386 in mass spectrum of 4a recorded by direct probe method indicated the formation of desired product. It was further confirmed by IR and 1H NMR spectral data and also from elemental analysis.

Gastric emptying studies in Swiss albino mice

Prokinetic studies were conducted in Preclinical Biology Department, Discovery Research, Dr Reddy’s Laboratories Ltd, Hyderabad. Compounds were tested on male Swiss albino mice (body weight 20-25 g) at dosage of 10 mg / kg orally.

Methodology: Adult Swiss male albino mice weighing between 20-25 g were used for our study. Mice were fasted overnight prior to experimentation but had free access to water. Phenol red (0.5 mL) meal was administered orally 1 hr after the drug administration. Animals were sacrificed by cervical dislocation 15 min after the administration of the meal. Abdomen was opened and stomach was dissected out. The stomach was cut into pieces and homogenized with 10 mL of 0.1 N NaOH. To this 1.9 mL of homogenate and 0.19 mL of trichloroacetic acid (20% w/v) were added and centrifuged at 3000 rpm for 20 min. To 1.5 mL of supernatant, 0.5 mL of 0.5 N NaOH was added and absorbance was measured at 560 nm. This correlates to the concentration of phenol red in the stomach, which in turn depends on gastric emptying (GE).

% GE = (1-X/Y) * 100

X--------Absorbance of phenol red recovered after 15 min after test meal.
Y--------Absorbance of phenol red recovered at 0 min following test meal.

Results: Compounds 2b and 5 showed significant acceleration of gastric emptying in mice. Cinitapride was taken as our reference standard.
Table I — Characterization data of compounds

<table>
<thead>
<tr>
<th>Compd Yield (%)</th>
<th>m.p.</th>
<th>(^1\text{H NMR (DMSO-}\text{d}_6, \delta))</th>
<th>Mass (M+1)</th>
<th>Mol. Formula</th>
<th>CHN Analysis Calculated % (found)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>2b 91.8</td>
<td>177-79</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 1.2-1.3 (m, 3H, CH), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 4.6-4.8 (m, 1H, CH), 5.6-5.8 (m, 1H, CH), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>373</td>
<td>(\text{C}_2\text{H}_3\text{N}_2\text{O}_2)</td>
<td>67.71</td>
</tr>
<tr>
<td>3a 82.6</td>
<td>195-98</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H), 9.8 (b, 1H, N-H in triazole)</td>
<td>386</td>
<td>(\text{C}_2\text{H}_3\text{N}_2\text{O}_2)</td>
<td>65.43</td>
</tr>
<tr>
<td>3b 80.2</td>
<td>168-72</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 1.2-1.3 (m, 3H, CH), 1.4-1.6 (m, 4H, CH), 2.1 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 4.6-4.8 (m, 1H, CH), 5.6-5.8 (m, 1H, CH), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>384</td>
<td>(\text{C}_2\text{H}_2\text{N}_2\text{O}_2)</td>
<td>65.77</td>
</tr>
<tr>
<td>4a 45.8</td>
<td>185-88</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.3 (s, 3H, CH), 2.4 (m, 2H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>400</td>
<td>(\text{C}_2\text{H}_3\text{N}_2\text{O}_2)</td>
<td>66.14</td>
</tr>
<tr>
<td>4b 39.8</td>
<td>202-05</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.2-1.3 (m, 3H, CH), 1.4-1.6 (m, 4H, CH), 2.1 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 4H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>480</td>
<td>(\text{C}_3\text{H}_4\text{N}_2\text{O}_2)</td>
<td>70.11</td>
</tr>
<tr>
<td>4c 41.6</td>
<td>202-05</td>
<td>1.02 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 2.6 (s, 3H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>428</td>
<td>(\text{C}_3\text{H}_3\text{N}_2\text{O}_3)</td>
<td>64.61</td>
</tr>
<tr>
<td>4d 43.5</td>
<td>165-69</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 2.6 (m, 2H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.2 (s, 6H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>476</td>
<td>(\text{C}_2\text{H}_3\text{N}_2\text{O}_2)</td>
<td>70.71</td>
</tr>
<tr>
<td>4e 39.4</td>
<td>189-93</td>
<td>(^1\text{H NMR (DMSO)}): (\delta) 1.0 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.3 (s, 6H, ArH), 8.1 (s, 1H, ArH), 8.4 (s, 1H, N-H)</td>
<td>490</td>
<td>(\text{C}_2\text{H}_3\text{N}_2\text{O}_3)</td>
<td>68.69</td>
</tr>
<tr>
<td>5 70.0</td>
<td>165-68</td>
<td>1.0 (t, 3H, CH, (J=7.0) Hz), 1.2-1.3 (m, 3H, CH), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.3 (s, 3H, CH), 2.4 (m, 6H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 4.6-4.8 (m, 1H, CH), 5.6-5.8 (m, 1H, CH), 7.2 (s, 1H, ArH), 8.1 (s, 1H, Ar)</td>
<td>417</td>
<td>(\text{C}_2\text{H}_3\text{N}_2\text{O}_4)</td>
<td>63.44</td>
</tr>
<tr>
<td>6 90.1</td>
<td>163-72</td>
<td>1.02 (t, 3H, CH, (J=7.0) Hz), 0.9-1.2 (m, 11H, N-CH(_2)-C(_6)H(_11)), 1.4-1.6 (m, 4H, CH), 2.2 (m, 4H, CH), 2.4 (m, 2H, CH), 2.6 (m, 3H, CH), 3.2 (m, 1H, CH), 4.1 (q, 2H, CH, (J=7.06) Hz), 7.2 (s, 1H, ArH), 8.1 (s, 1H, ArH)</td>
<td>389</td>
<td>(\text{C}_3\text{H}_6\text{N}_2\text{O}_2)</td>
<td>68.01</td>
</tr>
</tbody>
</table>
Experimental Section

Melting points were determined on a Thomas-Hoover capillary. IR spectra were recorded on a Nicolet 550 Series II Maguna FT-IR spectrometer. 1H NMR spectra were measured on a Varian Gemini 200 MHz spectrometer in DMSO-d_6 with TMS as an internal standard. Micro analyses were performed for C, H, N (Dr Reddy’s Research Foundation, Hyderabad) and were within ±0.4% of theoretical values. Silica gel column chromatography was performed using Merck silica gel 60 ASTM (70-230) mesh.

Synthesis of 4,5-diamino-N-(1-((cyclohex-3-enyl)methyl)piperidin-4-yl)-2-ethoxybenzamide 2b. To a solution of ortho-nitrophenylamine derivative (1, 20 g, 0.049 mole) in methanol (300 mL) in a hydrogen autoclave, Raney-Ni (4 g) was added and 3 kg H$_2$ pressure was applied under stirring. Reaction mixture was maintained up to 3 hr and hydrogen pressure was released. Catalyst was filtered, washed with methanol (75 mL), organic layer was distilled at 50°C under vacuum. The residue was stirred in ethyl acetate (250 mL) filtered and washed with ethyl acetate (50 mL) to afford compound 2b.

Synthesis of N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d] [1, 2, 3]triazole-5-carboxamide 3b. To a solution of 1,2-diamino compound (2a/2b 0.026 mole) in acetic acid (10 mL, 0.16 mole) and water (50 mL), was added aqueous NaNO$_2$ solution (2 g, 20 mL, 0.028 mole) at 5°C for 0.5 hr. Resulting solution was stirred for 1 hr at 5°C and an additional period of 1 hr at 45°C. Solid was filtered and washed with water (10 mL) at 25°C to afford triazole compound 3a/3b.

Synthesis of N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1-methyl-1H-benzo[d] [1, 2, 3]triazole-5-carboxamide 4a and 1-((cyclohex-3-enyl)methyl)-N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 4b. To a solution of N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1-methyl-1H-benzo[d][1,2,3]triazole-5-carboxamide 3a (3 g, 0.0077 mole) in dimethyl formamide (15 mL), was added Na$_2$CO$_3$ (0.8 g) and electrophilic reagent (0.0083 mole) in dimethyl formamide (15 mL). Resulting solution was stirred for 10 hr at 30°C. Reaction mass was quenched with water (30 mL) and insoluble material removed by filtration. Reaction mass was extracted with ethylacetate 60 mL. Organic phase was washed with ethylacetate (50 mL) to afford triazole compound 4b.

Synthesis of N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 3a and N-(1-((cyclohex-3-enyl)methyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 4c.
Synthesis of 1-acetyl-N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 4c. 1-benzyl-N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 4d and 1-benzyl-N-(1-cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1-methyl-1H-benzo[d][1,2,3]triazole-5-carboxamide 4e. To a solution of N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 4a to a solution of N-(1-(cyclohexylmethyl)piperidin-4-yl)-6-ethoxy-1H-benzo[d][1,2,3]triazole-5-carboxamide 4a. To a solution of diamino compound 6 (2 g, 0.005 mole) in acetic acid (3 mL) and water (6 mL), was added aqueous sodium nitrite solution (0.45 g, 5 mL, 0.006 mole) at 0-5ºC for 0.5 hr. Resulting solution was stirred for 1 hr at 5ºC and one more hour at 45ºC. Compound 4a was filtered and purified by column chromatography using ethyl acetate and hexanes mixture (1:1) as eluent.

Acknowledgement

The authors wish to thank the management of Dr Reddy’s Laboratories Ltd., Bulk Actives Unit-III, Discovery Research, Dr Reddy’s Laboratories Ltd and Mr S. Venkatraman, Sr Vice President, R&D for supporting this work.

References

15. Schank K. In Methodicum Chimicum; Zymalkowski, 6, 1975, 159.