AlCl$_3$ mediated three component cyclocondensation for the synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones

Anil Saini, Sanjay Kumar & Jagir S Sandhu*
Department of Chemistry, Punjabi University, Patiala 147 002, India
E-mail: j_sandhu2002@yahoo.com

Received 12 September 2005; accepted (revised) 12 December 2005

5-Unsubstituted-3,4-dihydropyrimidin-2(1H)-ones have been synthesized in excellent yields in aluminium trichloride mediated three component cyclocondensation of aldehyde, urea and enolisable ketones.

Keywords: Aluminium trichloride, potassium iodide, enolisable ketone, aldehyde, urea, 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones

IPC: Int.Cl.7 C 07 D

The pyrimidine skeleton is of great importance to chemists as well as biologists as it is available in a large variety of naturally occurring compounds and also in clinically useful molecules having diverse biological activities1,2. These include anticancer3 and antiviral4 activity. At present nine AIDS knocking agents are in clinical use, e.g. AZT, DDC, DDI are pyrimidine derivatives to name a few5 and their activity are manifested in the pyrimidine skeleton of 1a. Another related pyrimidine framework of the 1b type is very easily accessible via multicomponent coupling reactions (MCR) involving urea, active methylene compounds and aldehydes in the presence of a catalyst (Figure 1).

In recent years6, type 1b pyrimidine scaffold has been under intensive investigation as it has a very broad pharmacological profile in the form of calcium channel blockers, antihypertensive agents and alpha-1a-antagonists7. Certainly this very promising biological profile bodies well for 1b type of framework. Because of these activities several novel and efficient methods are reported for the production of this Biginelli scaffold. In these new methods, a variety of Lewis acid catalysts are employed e.g. Cu(OTf)$_2$, La(OTf)$_3$, CeCl$_3$.7H$_2$O, LaCl$_3$.7H$_2$O, LiBr, ZrCl$_4$, InX$_3$(X=Cl, Br), SnCl$_2$.2H$_2$O, Mn(OAc)$_3$.5H$_2$O, RuCl$_3$.xH$_2$O, etc. Clearly, in these intensive studies the major focus has been on the development of new and efficient catalysts and a majority of these developments are reported to be quite fruitful8.

The chemistry of C$_5$-C$_6$ double bond has been extensively explored in type 1a skeleton and several careful manipulations of this bond have lead to interesting chemistry9 and useful new structures. In contrast, C$_5$-C$_6$ double bond in Biginelli scaffold is relatively less explored and only a few useful transformations have been attempted10 involving very careful multistep manipulations.

![Figure 1](image-url)

The poorly investigated chemistry of C$_5$-C$_6$ bond in Biginelli compounds seems to be because of difficulties faced in manipulating the methyl group at C$_6$ and ester group at C$_5$ which are traditionally placed in these positions (see classical Biginelli scaffold 2, Scheme I).

Of course, there are sporadic reports11 of the preparation of C$_5$ unsubstituted compounds. These involve complex multistep procedures, for example, one reported procedure11a involves careful saponification and thermal decarboxylation which is certainly low yielding drastic step. Another method11e starting from ketocarboxylic acids is equally unattractive. In continuation of the work on both the systems viz. 1a,b9,12, herein are reported the results of the current investigation for the facile one pot synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones which involves the use of enolisable ketones like acetophenone instead of 1,3-dicarbonyl compounds as used in classical Biginelli reaction and bimetal system AlCl$_3$ and KI (Scheme II).
Initial studies followed the traditional Biginelli reaction (Scheme I) which proceeded very smoothly affording high yields with this catalytic system. After this initial success, these conditions were applied to enolisable ketones, urea and benzaldehyde to obtain 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones, 3 in 82-90% yields (see Table I).

The mechanistic pathway appears to involve the AlCl₃ and KI system which activates the carbonyl function, thereby making the methyl group readily enolisable, which in turn reacts with aldehyde and urea derived imine in the Michael way to produce product 3. This view is further substantiated when TMSI is found to show some improvement in yields, which is an established carbonyl activating group.

For in-depth study and to evaluate the catalytic efficacy of various Lewis acids in this reaction some other combinations have also been tried (see Table II). As is clear from this data in the Table II, the most effective combination appears to be the AlCl₃ and KI. Other combinations either give poor yields or are completely ineffective. For example, FeCl₃ and KI produces some significant results but not as good as AlCl₃ and KI system. When FeCl₃.6H₂O is utilized the reaction is complicated and the desired product is not obtained. So is the case with AlCl₃.6H₂O. Even if KI is replaced by trimethylsilyl iodide the yields did not improve significantly. However, it seems to be a good additive.

To conclude, the present investigation describes a simple, facile and efficient single pot bimetal protocol for the synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones utilising readily available and cheap commercial chemicals.

Experimental Section

Melting points were determined by using Buchi melting point apparatus and are uncorrected. IR spectra were recorded in KBr disc on a Perkin-Elmer 240C IR spectrometer. ¹H NMR spectra were recorded on a 90 MHz spectrometer (chemical shift are in δ ppm relative to TMS as internal standard reference).

General procedure for the synthesis of 4,6-diphenyl-3,4-dihydropyrimidin-2(1H)-ones: To a mixture of acetophenone (600 mg, 5.0 mmoles) and AlCl₃ + KI (0.5 mmole, 10 mol%) in CH₃CN (25 mL) was added benzaldehyde (530 mg, 5.0 mmoles) and urea (450 mg, 7.5 mmoles). Then the reaction mixture was refluxed to complete the reaction as followed by TLC. After completion of reaction, the mixture was refluxed to complete the reaction as followed by TLC. The crude product thus obtained was filtered and purified by recrystallization from EtOH to afford 3c in 90% yield, m.p. 233-35°C (dec.) Lit. m.p. 235-36°C, as in ref. 14 (Table I, entry 3). IR (KBr): 3319, 3185, 1656 cm⁻¹; ¹H NMR (DMSO-d₆): δ 8.71 (s, 1H), 7.86 (s, 1H), 7.16-7.35 (m, 10H, aromatic), 5.91 (s, 1H), 5.54 (s, 1H). The other 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones 3b-h were prepared following similar procedures and compared.
Table I—AlCl₃ mediated synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compd</th>
<th>Aldehydes</th>
<th>Ketones</th>
<th>Yield a (%)</th>
</tr>
</thead>
</table>
| 1 | 3a | \[
\begin{array}{c}
\text{CHO} \\
\text{Cl}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 89 |
| 2 | 3b | \[
\begin{array}{c}
\text{CHO} \\
\text{Cl}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 82 |
| 3 | 3c | \[
\begin{array}{c}
\text{CHO}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 90 |
| 4 | | \[
\begin{array}{c}
\text{CHO}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 0b |
| 5 | 3d | \[
\begin{array}{c}
\text{CHO} \\
\text{H₃C}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 85 |
| 6 | 3e | \[
\begin{array}{c}
\text{CHO} \\
\text{Cl}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃} \\
\text{H₃CO}
\end{array}
\] | 82 |
| 7 | 3f | \[
\begin{array}{c}
\text{CHO}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 86 |
| 8 | 3g | \[
\begin{array}{c}
\text{CHO} \\
\text{H₃C}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 84 |
| 9 | 3h | \[
\begin{array}{c}
\text{CHO} \\
\text{Cl}
\end{array}
\] | \[
\begin{array}{c}
\text{O} \\
\text{CH₃}
\end{array}
\] | 83 |

aYields refer to pure isolated product characterized by comparison of spectral and physical data with authentic samples

bAt RT
Acknowledgements

Authors wish to thank the Council of Scientific and Industrial Research, New Delhi, India for financial assistance.

References and Notes

 (b) Cheng C C & Roth B, Prog Med Chem, 8, 1971, 61.
 (c) Clercq E D, Anticancer Res, 6, 1986, 549.
5 5-Flourouracil is one of the oldest examples and is still in clinical use for a variety of cancers and recently its prodrug Doxyfluridine has been introduced by Hoffmann-LaRoche in the market. For further details see reviews (a) Pedersen O S & Pedersen E B, Synthesis, 2000, 479.
7 For further detailed information see reviews and other related reports (a) Kappe C O, Acc Chem Res, 33, 2000, 879.
 (b) Kappe C O, Molecules, 3, 1998, 1.
 (b) George T, Tahilramani R & Metha D V, Synthesis, 1975, 405.

| Table II — Synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones in presence of 0.5 mmol of different catalysts |
|---|---|---|
| Entry | Catalyst | Time (h) | Yield (%) |
| 1 | Zn+I₂ | 10 | n.r. |
| 2 | FeCl₃ | 26 | 45 |
| 3 | FeCl₃ + KI | 19 | 62 |
| 4 | FeCl₃·6H₂O + KI | 10-12 | n.r. |
| 5 | AlCl₃·6H₂O | 16 | n.r. ^b |
| 6 | AlCl₃ | 14 | 58 |
| 7 | AlCl₃ + KI | 6-7 | 90 |
| 8 | AlCl₃ + TMSI | 6-7 | 92 |

n.r. - negligible/no reaction

^aAcetophenone (5 mmole), urea (7.5 mmole), benzaldehyde (5 mmole), CH₃CN, reflux

^bComplex mixture
In a typical procedure, a mixture of ethylacetoacetate (710 mg, 5 mmole), urea (450 mg, 7.5 mmole) and benzaldehyde (530 mg, 5 mmole) in dry acetonitrile (15 mL) was stirred for a few minutes at RT. To this solution AlCl₃+KI (0.5 mmole, 10 mol%) was added and the resulting mixture was refluxed with stirring for 6 h under nitrogen atmosphere. After completion of reaction (monitored by TLC), the reaction mixture was cooled to RT and the solvent was removed under reduced pressure. The solid thus obtained was washed with ice-cold water and purified by recrystallization from ethanol to afford 2 in 98% yield.