Estimation of population parameters for a data deficient *Salmostoma bacaila* (Hamilton 1822) stock from the Mahananda river (tributary of the Ganges) in NW Bangladesh

M S Sarmina, M Y Hossaina,b, M A Islama, M A Rahmana, D Khatuna, Z Mawaa, A A Chowdhurya & J Ohtomib

aDepartment of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi – 6205, Bangladesh

bFaculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima – 890-0056, Japan

a[E-mail: hossainyeamin@gmail.com]

Received 11 July 2019; revised 11 September 2020

Salmostoma bacaila known as Razorbelly minnow (Hamilton in 1822) is an indigenous fish species in Bangladesh. This study emphasizes on population structure, growth pattern (length-weight and length-length relations), growth considerations (asymptotic length, L_∞; weight, W_∞; growth coefficient, K; age at zero length, t_0), size and age at sexual maturity (L_m), growth performance index (ϕ), life-span (t_{max}), conditions factor (Allometric, K_C; Fulton’s, K_F and Relative, K_R), prey-predator status through relative weight (W_R), form factor (a_{150}), total (Z), natural (M) and fishing mortality (F), exploitation rate (E) and maximum sustainable yield (MSY) of *S. bacaila* in the Mahananda river, northwestern Bangladesh. Total 305 specimens of *S. bacaila* were hardly sampled (ranging between 5.5 to 11.9 cm total length (TL), and 1.05 – 9.20 g total body weight (BW)) through regular fishing gears during August 2016 – July 2017. The regression coefficient ‘b’ of length-weight relations specified negative allometric growth. Growth parameters (GP) were figured as L_c = 12.66 cm, K = 0.60 year$^{-1}$, W_c = 11.36 g, t_0 = 0.048, t_{max} = 5.00 year$^{-1}$ and ϕ' = 1.98. The L_m was 7.34 cm in TL. Relative weight did not create any significant dissimilarity of 100 that would suggest a healthy habitat for *S. bacaila*. The a_{150} was 0.0052 specifying that this fish could be described as elongated. In addition, the Z was calculated to be 1.57 year$^{-1}$. The M and F values obtained were 0.92 and 0.65 year$^{-1}$, respectively. The E was 0.41 and MSY (E_{max}) was estimated as 0.35 year$^{-1}$ by yield per recruitment model. Present research knowledge will be very useful in planning the sustainable and appropriate management of this species in Bangladesh and bordering countries.

Keywords: Exploitation, Growth parameters, Maximum sustainable yield, Mortality, *Salmostoma bacaila*, Size at sexual maturity

Introduction

Salmostoma bacaila is the cyprinid species found predominantly in the Indian sub-continent, which inhibits rivers, beels, wetlands, ponds and flooded fields. *S. bacaila* is widespread through Bangladesh, India, Pakistan, Nepal, and Afganistan.1,2 Awareness of life history and stock status is very crucial for proper management approaches to preserve valuable fishes like *S. bacaila*.3 Length frequency distributions (LFDs) typically include fish ecology and life-history information.4 Length-weight relationships (LWRs) are used handy method in fisheries edifications for biomass and conditions index.5,7

Estimating parameters of growth and reproduction for fish is significant in distinguishing their life history, behavior, and potential productivity.8,9 Information on growth factors; von Bertalanffy growth constant (K), asymptotic length (L_∞), age at zero length (t_0), maximum reported age (t_{max}) as well as the natural mortality (M) is essential for constructing ecosystem models.10 Besides, these parameters also allow for the testing of life-history theories and the discovery of tentative assessment of additional parameters from those previously obtainable11-13. To assess if enough juveniles in a collected stock are mature or spawn the first sexual size (L_m) is a significant management parameter for a given fish population.14 Besides, overall productivity, health, and physiology of a fish population are assessed by fish conditions15,16. Furthermore, relative weight (W_R) is a commonly used index to ascertain the fish conditions17, and it has also been observed in Bangladesh.18,19 A sum of studies on length-weight relationships20-24 was performed in the past. Accordingly, the present research work stated inclusive stock status
information including population structure, growth pattern, growth parameters (asymptotic length, asymptotic weight, growth coefficient, age at zero length), growth performance index, life-span, reproduction (size at sexual maturity) condition factor, prey-predator status, form factor, mortality and exploitation of data deficient *S. bacaila* stock in Mahananda river, NW Bangladesh through a year-round analysis of small to large individuals.

Materials and Methods

The research was operated in the Mahananda river, NW Bangladesh (Lat. 24°29 N; Long. 88°18 E). In total, 305 samples of *S. bacaila* were exploited from the Mahananda river throughout August 2016 – July 2017 from the fisher’s catch collected by regular fishing gears (seine net, mesh size: ~1.0 cm). The length frequency distributions (LDFs) for *S. bacaila* were formatted with 1.0 cm intervals of TL. The growth pattern was assessed through LWR with $W = aL^b$ (W, body weight (g) and L, lengths in cm). On the basis of $\ln(W) = \ln(a) + b \ln (L)$ through linear regression analysis, a and b of the LWR and statistical significance level of r^2 with 95 % confidence limits were estimated. The von Bertalanffy (VBG) model as $L_t = L_\infty [1-\exp(-K (t-t_0))]$ of length basis and $W_t = W_\infty [1-\exp(-K (t-t_0))]^b$ for weight basis were performed to describe growth parameters (L_∞, mean length at age t; t_0, the age at zero growth); K, the hypothetical age of zero length25. Moreover, the growth parameter, asymptotic length (L_∞) was calculated based on maximum observed length through log (L_∞) = 0.944 + 0.9841* log (L_{max})ref. 11). The L_m of *S. bacaila* was estimated based on maximum observed length by log (L_m) = -0.1189 + 0.9157* log (L_{max})ref. 26). Besides, the age at maturity (t_m) was assessed by the equation of t_m (50 %) = (-1/1)*ln(1-L_m/L_∞)ref. 27). The other parameter, growth coefficient (K) was calculated by $K = \ln(1+L_m/L_\infty)$ t_{ref} 28). The age at zero length was determined by log (t_0) = -0.3922 - 0.2752 log L_∞. The asymptotic weight (W_∞) was estimated by $W_\infty = aL_\infty^b$. Furthermore, the growth performance index was studied by $\delta = \log_{10}K + 2\log_{10}L_{ref}$. The life-span or longevity was obtained by $t_{max} = 3/K$ref. 30).

The equation, $K_A = W/L^b$ref. 31) was used to calculate allometric condition factor (K_A). Fulton’s condition factor was attained by $K_F = 100*W/L^2$. Relative condition factor was estimated via $K_R = W/(a\times L^b)$ref. 32). The relative weight was taken with $W_R = ((W/W_{max})\times 100)$ref. 6), W_5 refers standard weight calculated by $W_5 = a\times L^b$. The equation $a_{X0} = 10^{\log a_{-s} (b-3)}$ref. 6) was used to compute the form factor; where, s is the regression slope ($S = -1.358$).

The parameters of mortality (Z, M, and F) were evaluated from length frequency distribution data and growth parameters. The instantaneous total mortality (Z) was assessed by $\ln(N_t/A_t) = a + b*t$ (N_t is an individual number of relative age (t) and A_t, the time required33. Natural mortality was obtained by $M = -\ln[0.01]/t_{max}$ref. 27). Fishing mortality was estimated with $F = Z - M$. Exploitation rate was considered using the formula: $E = F/(F + M)^{ref. 34}$. An index of yield-per-recruit can be functioned as $L_c/L_{mx}, F/K, M/K^{ref. 35}$, and F/M:

$$Y'/R = \frac{F/M}{1+F/M} (1-L_c/L_{mx})^{MK}$$

$$\left(1 - \frac{3(1-L_c/L_{mx})}{1+M/K+t_{r}} + \frac{3(1-L_c/L_{mx})^2}{1+M/K+t_{r}^2} - \frac{(1-L_c/L_{mx})^3}{1+M/K+t_{r}^3}\right)$$

GraphPad Prism 6.5 Software was introduced for statistical analyses. The one sample t-test36 was applied to compare the mean W_R with 100. To examine the relationship between condition factor with TL and BW, a Spearman rank-correlation test was followed. All analyses were deliberated at 5 % significance ($p < 0.05$).

Results

LDFs showed that the largest individual was of length 11.9 cm and smallest individual was 5.5 cm in length; whereas, the body weight was ranged between 1.05 – 9.20 g with 95 % confidence limit (CL) (Table 1). The size group of 9.00 – 10.00 cm TL was numerically dominant contributing to 33.11 % of its total population (Fig. 1). In this research, the b value of LWRs indicated negative allometric growth ($b < 3$) which is represented in Figure 1. The LLRs were significant ($p < 0.001$) with a coefficient of determination > 0.979. The regression parameter, 95 % confidence interval of a and b, coefficient of determination (r^2), and growth type (GT) of *S. bacaila* are presented in Table 1.

The von Bertalanffy growth parameters obtained for *S. bacaila* were $L_\infty = 12.66$ cm, $W_\infty = 11.36$ g, $K = 0.60$ and $t_0 = 0.048$ year$^{-1}$. The observed
and predicted maximum total length was 12.01 and 12.66 cm, respectively (Fig. 2). Similarly, the observed and predicted maximum BW was 9.76 and 11.36 g, respectively (Fig. 2). The t_m was 0.87 year, and the growth performance index (ϕ) was 1.98. The longevity of age t_{max} was 5.00 years (Table 2). The L_m was calculated as 7.34 cm (Fig. 3). Furthermore, the L_m from different water-bodies through the maximum length was calculated by following the available literature as shown in Table 3.
The values of all condition factors (\(K_A\), \(K_F\), \(K_R\)) and \(W_R\) are given in Table 4. Spearman rank-correlation test revealed highly significant correlation in all condition factors with BW but did not show any relationship with TL. Moreover, there was a significant relation between BW vs. \(W_R\) but not between TL vs. \(W_R\) (Fig. 4). The \(W_R\) did not exhibit any notable variation from 100 for \(S.\) bacaila \((p = 0.4208)\) by following one sample t-test. The form factor \((a_{3.0})\) was estimated as 0.0052 through length-weight regression, where the parameters were \(a = 0.0074\) and \(b = 2.89\). To compare with present study, the \(a_{3.0}\) of \(S.\) bacaila from several water-bodies is also calculated through available data (Table 3).

The total mortality assessed from the slope of the length converted catch curve was \(Z = 1.57\) year\(^{-1}\) for \(S.\) bacaila (Table 2; Fig. 5). The calculated natural mortality was \(M = 0.92\) year\(^{-1}\) and fishing mortality \((F)\) was 0.65 year\(^{-1}\). From the evaluated fishing and total mortality, the exploitation rate was calculated as

<table>
<thead>
<tr>
<th>Water body</th>
<th>(TL_{\text{max}})</th>
<th>Regression parameter</th>
<th>References</th>
<th>(a_{3.0})</th>
<th>(L_m)</th>
<th>95 % CL of (L_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indus river, Pakistan</td>
<td>16.3</td>
<td>0.1153</td>
<td>2.88</td>
<td>Muhammad et al. (^{22})</td>
<td>0.0792</td>
<td>9.80</td>
</tr>
<tr>
<td>Gandak river, Bihar, India</td>
<td>15.7</td>
<td>0.0115</td>
<td>2.80</td>
<td>Baitha et al. (^{23})</td>
<td>0.0062</td>
<td>9.47</td>
</tr>
<tr>
<td>Barak river, Assam, India</td>
<td>10.4</td>
<td>0.0180</td>
<td>2.47</td>
<td>Nath et al. (^{24})</td>
<td>0.0034</td>
<td>6.49</td>
</tr>
<tr>
<td>Atrai river, Dinajpur, Bangladesh</td>
<td>10.5</td>
<td>0.0090</td>
<td>2.76</td>
<td>Islam & Mia (^{21})</td>
<td>0.0042</td>
<td>6.55</td>
</tr>
<tr>
<td>Mahananda river, NW Bangladesh</td>
<td>11.9</td>
<td>0.0074</td>
<td>2.89</td>
<td>Present study</td>
<td>0.0052</td>
<td>7.34</td>
</tr>
</tbody>
</table>

Table 3 — Calculated size at sexual maturity \((L_m)\) and form factors of \(S.\) bacaila reported from different water-bodies wide-world.

<table>
<thead>
<tr>
<th>Condition factors</th>
<th>(n)</th>
<th>Min</th>
<th>Max</th>
<th>Mean ± SD</th>
<th>95 % CL</th>
<th>(95%) CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_F)</td>
<td>305</td>
<td>0.475</td>
<td>0.697</td>
<td>0.584 ± 0.045</td>
<td>0.5784 - 0.5886</td>
<td></td>
</tr>
<tr>
<td>(K_A)</td>
<td></td>
<td>0.006</td>
<td>0.009</td>
<td>0.007 ± 0.001</td>
<td>0.0073 - 0.0074</td>
<td></td>
</tr>
<tr>
<td>(K_R)</td>
<td></td>
<td>0.806</td>
<td>1.176</td>
<td>0.997 ± 0.076</td>
<td>0.9885 - 1.0056</td>
<td></td>
</tr>
<tr>
<td>(W_R)</td>
<td>80.553</td>
<td>117.648</td>
<td>99.707 ± 7.580</td>
<td>98.853 - 100.561</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 — Condition factors and their relationships with total length (TL) and body weight (BW) of \(S.\) bacaila

<table>
<thead>
<tr>
<th>Relationships</th>
<th>(r_s) values</th>
<th>95 % CL of (r_s)</th>
<th>(P)-values</th>
<th>Degree of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL vs. (K_A)</td>
<td>0.0304</td>
<td>-0.0855 - 0.1455</td>
<td>(p = 0.5968)</td>
<td>NS</td>
</tr>
<tr>
<td>TL vs. (K_F)</td>
<td>-0.1949</td>
<td>-0.3006 - 0.0844</td>
<td>(p > 0.0006)</td>
<td>***</td>
</tr>
<tr>
<td>TL vs. (K_R)</td>
<td>-0.0199</td>
<td>-0.1319 - 0.0927</td>
<td>(p = 0.7298)</td>
<td>NS</td>
</tr>
<tr>
<td>TL vs. (W_R)</td>
<td>0.0197</td>
<td>-0.1317 - 0.0929</td>
<td>(p = 0.7325)</td>
<td>NS</td>
</tr>
<tr>
<td>BW vs. (K_A)</td>
<td>0.2158</td>
<td>0.1027 - 0.3233</td>
<td>(p > 0.0001)</td>
<td>***</td>
</tr>
<tr>
<td>BW vs. (K_F)</td>
<td>-0.0351</td>
<td>-0.1468 - 0.0776</td>
<td>(p = 0.5420)</td>
<td>NS</td>
</tr>
<tr>
<td>BW vs. (K_R)</td>
<td>0.1369</td>
<td>0.0249 - 0.2454</td>
<td>(p > 0.0168)</td>
<td>**</td>
</tr>
<tr>
<td>BW vs. (W_R)</td>
<td>0.1371</td>
<td>0.0251 - 0.2456</td>
<td>(p > 0.0166)</td>
<td>*</td>
</tr>
</tbody>
</table>

NS - not significant; * - significant; *** - highly significant; and \(P\) - level of significance.
Discussion

In general, the estimate of population parameters and stock status is rendered using certain three methodologies viz. (i) hard-part analysis method, (ii) mark-recapture method, and (iii) length-frequency distributions method with consecutive twelve months series data. Present study estimated the growth parameters and size at maturity of *S. bacaila* from Mahananda river using the empirical models where, the fish under study could not be collected for 12 months consecutively. Additionally, this is the first attempt by the empirical models to estimate the population parameters. Therefore, contributions will be made in the FishBase and/or in other online databases.

In the present study, it was quite difficult to capture *S. bacaila* of length < 5.5 cm in sampling due to either because of inadequate selection of fishing gear or because fishers were unable to catch a smaller size or they were absent at the fishing grounds. In addition, fisher's tendency to discard small-sized fish may be another reason for this constraint.

The maximum size of *S. bacaila* found as 11.9 cm TL which is higher than the maximum size recorded from the Atrai river, Bangladesh (TL 10.50 cm) and also from India (TL 10.4 cm); however it was lower than the earlier study which reported 18.0 cm TL. Besides, some other previous studies recorded the maximum length of 15.2 cm total length at Yamuna river, India and 15.7 cm from Gandak river, Bihar, India which are also higher than the present study. Furthermore, TL 16.3 cm has been documented in the Indus river, Pakistan which is also higher than the present study. Maximum length statistics are needed to determine population parameters as well as L∞ and K, which are very much imperative for planning, supervision and managing of fisheries resource.

In current research, the b value of the LWRs was 2.89, which showed a negative allometric growth of *S. bacaila* in the Mahananda river. The results of present study, however, was comparable to the other studies e.g., reported negative allometric growth (b = 2.76) in river Yamuna, India; negative growth pattern (b = 2.80) was also observed from Gandak River, India and from the Indus River, Pakistan (b = 2.88) which are nearly identical to the current study. Moreover, LLRs of present study were extremely significant (p < 0.001). Since this is the very first LLR study on *S. bacaila*, which restricts contrast with others.

The growth parameters K and L∞ were 0.60 year⁻¹ and 12.66 cm, respectively for *S. bacaila*. The age at zero length was 0.048 year specified negative to that point to juveniles growing more rapidly than adults from the expected growth curve. Growth performance index (φ) was 1.98. The Lm of *S. bacaila* for combined sexes was 7.34 cm in (TL). Previous studies were interested on one condition factor, however several condition factors (Kf; Kf; Kr and Wr) were assessed in the present study to assess the health and habitual condition of *S. bacaila*. According to the earlier study, the Wr supports to think through the overall health and appropriateness along with ecosystem instabilities up to population level. However, no significant dissimilarities from 100 were discovered in the present study, which indicated that the population is in a healthy state with fewer predators and plenty of food.

The value of α was 0.0052 for combined sex indicating that *S. bacaila* can be categorized as an elongated fish that is a distinct character of many riverine fishes. The M of *S. bacaila* was estimated to be 0.92 year⁻¹, while the F was found as 0.65 year⁻¹. The catch amounts of *S. bacaila* declined gradually because of overfishing in the Mahananda river. This study verified that the fishing mortality was lower than the natural mortality.

The exploitation rate of *S. bacaila* was assessed as 0.41. Depending on the relationship between the exploitation and yield per recruit for this species, it

![Graph showing mortality of Salmostoma bacaila from the Mahananda river, Bangladesh](image)

Fig. 5 — Mortality of Salmostoma bacaila from the Mahananda river, Bangladesh

\[
y = -1.573x + 8.253
\]

\[
r^2 = 0.988
\]
could be inferred that the exploitation is higher than the MSY level and the effort should be decreased by 6% to obtain maximum sustainable yield. From the present investigation, it is found that about 50% fishes were spawned when the length was 7.34 cm, smaller then this sized fishes are highly prohibited to catch and the value of L_{mp} observed was 8.34 cm indicating the length range where optimum yield could be obtained, hence fish sizes above 8.34 TL are recommended for exploitation (Fig. 6).

Unfortunately, this research work is the first effort to evaluate the growth parameters, size at maturity, conditions factor and mortality for $S. baceila$ from the Mahananda river as well from any water bodies and would be baseline study for the future studies to detect the factors affecting the L_m and spawning season and to ascertain the causes of fish mortality.

Acknowledgements

We are thankful to the Bangladesh Agriculture Research Council for the funding.

Conflict of Interest

The authors report no conflict of interest.

Author Contributions

MSS: contributed to analysis, writing and editing. MYH: developed the concept. MAI & MAR: collected data. DK, ZM & AAC: assisted in formatting and editing. JO: performed revision.

References

11. Froese R & Binoohan C, Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data, J Fish Biol, 56 (2000) 758-773.

29. **Pauly D, On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks, J Du ConseilInt Pour L’exploration de la Mer, 39 (1980) 175-192.**

30. **Pauly D & Munro J L, Once more on the comparison of growth in fish and invertebrates. ICLARM: International center for living aquatic resources management, Fishbyte, 2 (1984) 21.**

32. **Le Cren E D, The length-weight relationships and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis), J Anim Ecol, 20 (1951) 201-219.**

34. **Sparre D & Venema S C, Introduction to Tropical Fish Stock Assessment, (Part I manual. FAO fish Tech. PUB. 306. 1), 1992, pp. 376.**

40. **Hossain M Y, Hossen M A, Khairun Y, Bahkali A H & Elgorban A M, Length weight relationships of *Dermogenys pusilla* (Zenarchopteridae) and *Labro bonita* (Cyprinidae) in the Ganges River (NW Bangladesh), J Appl Ichthyol, 32 (2016) 744-746.**

42. **Hossain M Y, Morphometric relationships of length-weight and length-length of four Cyprinid small indigenous fish species from the Padma River (NW Bangladesh), *Turkish J Fish Aquat Sci*, 10 (2010) 131-134.**

47. **King M, Fisheries Biology Assessment and Management, (John Wiley & Sons), 2013, pp. 400.**