Resource evaluation, stock, growth and mortality of the Bombay duck (Harpodon nehereus Hamilton, 1822) fishery in the coastal waters of Pakistan

M T Kalhoro\textsuperscript{a}, M Yongtong*\textsuperscript{a}, M A Kalhoro\textsuperscript{b}, S B H Shah\textsuperscript{c}, A M Memon\textsuperscript{d}, M Moshin\textsuperscript{e} & M A Dahir\textsuperscript{a}

\textsuperscript{a}College of Fisheries, Fisheries Economics and Management, Ocean University of China, Qingdao – 266 003, China
\textsuperscript{b}Faculty of Marine Science, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal Balochistan – 90150, Pakistan
\textsuperscript{c}College of Economics, Ocean University of China, Qingdao – 266 003, China
\textsuperscript{d}Department of Fisheries Hyderabad, Government of Sindh – 71000, Pakistan
\textsuperscript{e}College of International Finance and Trade, Zhejiang Yuexiu University of Foreign Languages, Shaoxing – 312 000, China

*[E-mail: ytmu@ouc.edu.cn]

Received 08 July 2019; revised 08 August 2019

Bombay duck, Harpodon nehereus (Hamilton, 1822), harvested mainly by dol nets, has been a prolific fishery in the northern Arabian Sea. Monthly length composition data for \textit{H. nehereus}, landed at the Karachi Fish Harbor (KFH) from July 2014 to June 2015 was used to determine growth, mortality and stock evaluation. Total 2252 specimen with an average of 19.171 ± 2.659 cm TL (14 to 28 cm total length), an average of 45.254 ± 23.113 g of 9 to 174 g (total body weight) analyzed. The data used in FiSAT-II applying ELEFAN-I package for estimating population dynamics. The estimated the growth parameters of von Bertalanffy \(L_\infty= 29.40 \text{ cm} \), \(K = 0.610 \text{ year}^{-1} \) and \(t_0 = -0.359 \text{ year}^{-1} \) with a phi \(\phi' = 2.722 \). The length-weight relationship was \(W = 0.001L^{3.477} \) (\(R^2 = 0.918 \)) and \(b > 3 \) is described as positive allometric growth. Total mortality was calculated at \(Z = 1.800 \text{ year}^{-1} \), natural mortality estimated at \(M = 1.276 \text{ year}^{-1} \) at 27 °C in addition, fishing mortality rate was 0.524 year\(^{-1} \) is not much higher than the safe level (\(F_{opt} = 0.638 \text{ year}^{-1} \)) and a little below edge (\(F_{lim} = 0.850 \text{ year}^{-1} \)) biological reference points. Due to mortality and exploitation rate (\(E = 0.291 < 0.50 \)), the population stock and reserves were underutilized.

[Keywords: Arabian Sea, Growth, Harpodon nehereus, Mortality, Pakistan]

Introduction

Fisheries play a significant role in state financial system which provides employment and food to the common people. Recently fish catch is decreasing due to anthropogenic activities and illegal, unreported, and unregulated (IUU) fishing nets\textsuperscript{1}. Pakistan coast is about 1120 km and divided into two parts including Sindh 348 km and Baluchistan 772 km (Fig. 1). Baluchistan coast is sharp, irregular between 12-32 km, bottom is generally rocky and also found few islands like Charna and Astole Island. Astola Island is declared as marine protected area due to special habitat and rich in biodiversity. Sindh coast has sandy and muddy bottom and the area extended 40 - 120 trawling ground and rich in mangroves and fisheries resources due to Indus River\textsuperscript{1} (Fig. 1). Harpodon nehereus (Hamilton, 1822) Synodontidae family and commonly called as Bombay duck and is harvested mainly by Dol nets (stationary bag nets), has been a prolific fishery in the northern region of Arabian Sea, and key fishery resources of Pakistan. \textit{H. nehereus} found at offshore deep waters on sandy and muddy bottom but also found at mouth of river during monsoon season\textsuperscript{2}. Indus river freshwater creates suitable atmosphere for nursery for finfish, shellfish and other marine life\textsuperscript{3}. Mostly fishery management is depending on estimating population dynamics, for example the length-weight relationships (LWR), growth and mortality, and exploitation parameters\textsuperscript{4}. Different research work on different parameters has been conducted from Indian waters\textsuperscript{5}. Some biological aspects and stock analysis have been studied from different area\textsuperscript{6,7}. There are different studies on fish stock assessment have been conducted on different fish species. Like stock assessment of \textit{Nemipterus} spp.\textsuperscript{8,9}, \textit{Portunus} spp.\textsuperscript{10,11}, Lizardfishes\textsuperscript{12-15}, Indian scad, loligo and Indian oil sardine\textsuperscript{16-19} from Pakistani waters. Results shows that stock of single fishery from Pakistani waters are over-exploitation state and suggests few management steps to maintain fish stock at a sustainable state.

Maximum sustainable yield study was conducted from Pakistani waters\textsuperscript{15} but there was no work reported on length-weight and population dynamic parameters of Bombay duck fishery from Pakistani waters. The length-weight and length frequency
distribution of Bombay duck were used from Pakistan for growth and mortality parameters using FISAT-II software. Present findings may be used for biological as well as fishery management particularly for this species.

Materials and Methods
Samples were collected on weekly bases during July 2014 to June 2015 from Karachi fish landing site. Fish samples brought to biological lab for further analysis and measurement. Total length and weight were analyzed in centimeters (cm) and grams (g), respectively.

Length weight relationship
Power function: $W = aL^b$ was used to determine the length-weight parameter of species. Total of 2252 pairs of length-weight relationship were measured as length ($L$) and weight ($W$) for $H. nehereus$. $W$ is weight (g), $L$ is length (TL) of fish in cm and $a$ is constant condition factor and slope $b$.

Growth parameters
Von Bertalanffy growth function (VGBF) used to estimate length with age of $H. nehereus$ using:

$$L_t = L_\infty (1 - \exp(-K(t - t_0)))$$

Where $L_t$ was length at age $t$, $L_\infty$ was asymptotic average maximum length, $K$ was growth rate and $t_0$ was the hypothetical age at zero$^{20}$ calculated by empirical equation$^{21}$:

$$\log_{10}(-t_0) = -0.3922 - 0.275\log_{10}L_\infty - 1.038\log_{10}K$$

Biological reference points
Biological reference points were calculated as: $F_{opt} = M$ following Gulland$^{22}$.

Mortality rate
The length-converted catch curve method was used to analyze total mortality ($Z$)$^{21}$, applying growth parameters ($L_\infty$ and $K$).

Natural mortality was estimated following Pauly’s formula as:

$$\log_{10}(M) = -0.006 - 0.279\log_{10}L_\infty + 0.654\log_{10}(K) + 0.6434\log_{10}(T)$$

Where, $L_\infty$ in cm and $K$ is growth curve. $T$ is sea surface temperature of Pakistani water at 27 °C. By subtract (M) from (Z) fishing mortality (F) was obtained, exploitation rate (E) was calculated from F/Z.

Virtual population analysis (VPA)
VPA for the $H. nehereus$ was determined by using population parameter values into FiSAT software.

Growth performance index (phi)
$\phi$, $\phi$ of $H. nehereus$ was determined following Pauly and Munro$^{23}$ as:

$$\phi = \log_{10} K + 2\log_{10}L_\infty$$

Results
Length-weight relationship
Total 2252 pairs of length-weight pairs of $H. nehereus$ were collected during July 2014 to June 2015, length and weight ranges from 14 to 28 cm and 15 to 151 g, respectively. The dominant length variety was 16 to 21 cm (Fig. 2). The average length and weight were 19.171 ± 2.659 cm TL (14 to 28 cm total length) an average of 45.254 ± 23.113 g of 9 to 174 g (total body weight) were examined. Relationship of length and weight was found at $W = 0.001L^{3.477}$ ($R^2 = 0.918$; Fig. 3).

Virtual population analysis (VPA)
VPA for the $H. nehereus$ was determined by using population parameter values into FiSAT software.

Growth performance index (phi)
$\phi$, $\phi$ of $H. nehereus$ was determined following Pauly and Munro$^{23}$ as:

$$\phi = \log_{10} K + 2\log_{10}L_\infty$$

Virtual population analysis (VPA)
VPA for the $H. nehereus$ was determined by using population parameter values into FiSAT software.

Growth parameters
Length-frequency data were analyzed using software FiSAT-II using the ELEFAN-I package for estimating population dynamics. The growth parameters of von Bertalanffy $L_\infty = 29.4$ cm, $K = 0.610$ year$^{-1}$ (Rn = 0.306) and $t_0 = -0.359$ year$^{-1}$ (Fig. 4).
Biological reference points

Biological reference points was $F_{opt} = 0.638 \text{ year}^{-1}$, which is less than exploitation rate and optimum fishing range.

Mortality rate

Total mortality ($Z$) calculated on basis of length converted catch curve and was found at $Z = 1.800 \text{ year}^{-1}$ (95% CI = 1.65-1.95; Fig. 5). The black dots data selected for total mortality in which black dots representing the larger size of fishes while yellow dots showing smaller fish species. The larger size fish species were selected to estimate the total mortality. The natural mortality estimated using growth rate and average sea surface temperature (SST) at 27 °C was $M = 1.276 \text{ year}^{-1}$. Fishing mortality ($F$) and exploitation rate ($E$) was estimated at 0.524, 0.291 year$^{-1}$, respectively (Fig. 6) from Pakistani waters.

Virtual population analysis

The VPA shows that most of the fish catch pressure was on the fish size from 20 to 28 cm (Fig. 7).

Growth performance index

Phi ($\phi$) of $H.\ nehereus$ was computed as 2.604 in Pakistani waters.

Discussion

Length-weight relationship

Relation of length and weight data provide the basic information about growth state of fish. This relationship can also be helpful to know fish feeding rate, maturity and metamorphosis. This relation compares the fatness and wellbeing condition of fish. Slope $b$ equals to 3 describe isometric growth. The values less than 3 means negative allometric and values greater than 3 means positive allometric growth. The values equal to 3 means small fish and large fishes have same form of condition. Beverton & Holt reported that $b$ values going away from 3 are unusual in larger fishes.

Present study of $b$ values for $H.\ nehereus$ was $3.477$ ($R^2 = 0.918$), which shows the allometric growth of this from Pakistani waters. Gayanilo et al. confirmed the slope $b$ values ranged between 2.5 to 3.5, and current study results are in the range of those values. $R^2$ ($R^2 = 0.918$) or goodness of fit values from present study shows that the sample size of this study
is reliable and samples collected from different fish landing sites represent the size class of this species from Pakistani waters.

Table 1 — Comparison of LWR results with earlier findings from different regions

<table>
<thead>
<tr>
<th>Reference</th>
<th>Region</th>
<th>a</th>
<th>b</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amrullah Taqwa et al.</td>
<td>Indonesia</td>
<td>0.005</td>
<td>3.00</td>
<td>0.93</td>
</tr>
<tr>
<td>Sarkar et al.</td>
<td>Bay of Bengal</td>
<td>0.003199</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>Tasnuba Hasin</td>
<td>Chittagong Bangladesh</td>
<td>0.02019</td>
<td>2.404</td>
<td>0.834</td>
</tr>
<tr>
<td>Asbar Laga et al.</td>
<td>Tarakan Island, Indonesia</td>
<td>0.01</td>
<td>2.7</td>
<td>0.826</td>
</tr>
<tr>
<td>Shingadia</td>
<td>Coastal waters of Mumbai</td>
<td>.006</td>
<td>2.9</td>
<td>0.89</td>
</tr>
<tr>
<td>Behera et al.</td>
<td>West Bengal Saurashtra coast India</td>
<td>0.000001</td>
<td>3.341</td>
<td>0.930</td>
</tr>
<tr>
<td>Ghosh et al.</td>
<td>Mumbai waters, India</td>
<td>-3.1362</td>
<td>3.606</td>
<td>0.9309</td>
</tr>
<tr>
<td>Amin</td>
<td>Neritic water of Bangladesh</td>
<td>0.00243</td>
<td>3.051</td>
<td>0.99</td>
</tr>
<tr>
<td>Present study</td>
<td>Pakistan Arabian Sea</td>
<td>0.001</td>
<td>3.477</td>
<td>0.918</td>
</tr>
</tbody>
</table>

However, the values of length-weight relationship of *H. nehereus* are compared with previous studies from different areas (Table 1). The obtained exponential values of slope *b* from this study are similar to the previous studies. Differences in values may be because of different areas and different water quality and food availability and growth of fish conditions like age, sex and maturation.

Growth parameters

The VBGF method commonly used to estimate the growth parameters which are based on using length frequency data which depend on size of fish.

Estimated growth rate values were compared with previous studies from different regions (Table 2). Values from India was \( L_\infty = 42.5 \) and \( K = 0.761 \) year \(^{-1}\) and \( L_\infty = 35.39 \) cm and 0.86 year \(^{-1}\) (ref. 6), from Bangladesh \( L_\infty = 24.48 \) cm and \( K=1.50 \) and \( L_\infty=45.05 \) and \( K=1.30 \) year \(^{-1}\)(refs. 32,33), from Taiwan \( L_\infty = 62.24, K = 0.143 \) year \(^{-1}\)(ref. 34). The obtained result from present study (\( L_\infty = 29.4 \) cm, \( K = 0.610 \) year \(^{-1}\)). The Rn shows the goodness of growth model in present study the values (Rn = 0.306) shows the model is suitable for to estimate the growth parameters. Generally, fishes having high K have high natural mortality (M) and shorter life span. It clearly shows that the \( L_\infty \) values from India and Taiwan are higher than the present study but those from Bangladesh are lower. Generally, related values are showing in Table 2 which shows the difference in values some are close or similar with the present study and some values are higher than present study.
Small differences may be due the different sizes of samples. The growth performance index values are similar to the present study. The growth of fish can also be affected by the temperature, which affects the physiological process, food, transformation, metabolism and excretion of fish\(^35\).

**Mortality rate**

The mortality parameters show the death rate of the fish population, the rate of total mortality, natural mortality and fishing mortality may not stay at a constant level and may vary from time to time\(^36\). Even small variations in growth parameters can affect the calculated mortality rates\(^35\). The length converted catch curve was used to estimate the total mortality, and Pauly empirical formula used to calculate the natural mortality. The estimated mortality rate values from present study \((Z = 1.80, M = 1.276, F = 0.524\text{ and } E = 0.291 \text{ year}^{-1})\) is compared to previous studies from different parts of the world. The mortality rate values from India \((M = 1.52, F = 1.73, Z = 3.25 \text{ and } E = 0.53)\)^3, M = 1.30, F = 3.03 and Z = 4.339, from Bangladesh was M = 2.46, F = 3.27, Z = 5.73 and E = 0.57\(^{ref.38}\), M = 1.86, F = 2.58, Z = 4.44 and E = 0.58241\(^{ref.33}\), from Indonesia the mortality values were M = 0.51, F = 2.05, Z = 2.56 and E = 0.80\(^{ref.39}\).

The values of total mortality \(Z\) were calculated by using the length converted catch curve supposing that mortality is consistent with age and that collected samples were illustrative of the age groups considered. The mortality values from previous studies are higher than the present study which may be due to difference in sample size or fishing methods used in different areas. It may also be assumed that the commercial values of this species is higher than Pakistan. Gulland\(^22\) and Patterson\(^40\) described that if the exploitation rate \(E\) values should be lower than 0.4 year\(^{-1}\) than it may be considered at sustainable state. According to the present study the exploitation rate \(E = 0.291\) shows that the stock of this species is in sustainable state or underutilized. According to present finding it may also be suggested that fishing efforts could be utilized to catch this species to give less stress on other fish species in the Pakistani waters.

**Conclusion**

Present study is conducted using length-weight and length frequency distribution data from Pakistani waters. The length-weight and growth parameter values are similar to previous studies from different areas of the world. The little difference maybe because of some environmental factors effacing and availability of food may be an effect on the growth of this fish. It is also found that the mortality parameter values and exploitation rate from other area is higher than the present study which clearly defines that the fishing efforts for this particular fishery are very low. The probable reason for the same may be because the commercial importance of this fishery is very low for the export as well as for the local consumption.

The fishery managers need to set the fishing season, individual fisheries catch in a particular season to catch specific fishes. According to previous studies from Pakistani waters shows that the stock is over-exploited which means the fishermen need to catch such kind of species which is underutilized and export to different countries and local consumption which created their economic value of this fishery in Pakistan.

**Acknowledgments**

The author is grateful to Marine Scholarship, Chinese Scholarship Council (CSC) funding his Ph.D. Degree. This study was supported by the special research fund of Ocean University of China (OUC) (201022001) and The Ministry of Agriculture and Rural Affairs of the People's Republic of China (CARS-49).

**Table 2** — Comparison of reported growth parameters values of *H. nehreus* with present study from Pakistani waters

<table>
<thead>
<tr>
<th>Reference</th>
<th>Research area</th>
<th>K</th>
<th>(L_\infty)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amrullah et al(^{31})</td>
<td>Indonesia</td>
<td>0.93</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sarker et al(^{33})</td>
<td>Bay of Bangal</td>
<td>1.30</td>
<td>45.05</td>
<td>2.58</td>
</tr>
<tr>
<td>Hasin(^{41})</td>
<td>Chittagong, Bangladesh</td>
<td>0.978</td>
<td>25.4</td>
<td>-</td>
</tr>
<tr>
<td>Asbar et al(^{39})</td>
<td>Tarakan Island waters, Indonesia</td>
<td>0.51</td>
<td>27.878</td>
<td>0.80</td>
</tr>
<tr>
<td>Hitesh et al(^{42})</td>
<td>Coastal waters of Mumbai</td>
<td>0.936</td>
<td>22.8</td>
<td>-</td>
</tr>
<tr>
<td>Behera et al(^{45})</td>
<td>West Bengal</td>
<td>0.930</td>
<td>26.9</td>
<td>3.30</td>
</tr>
<tr>
<td>Ghosh et al(^{5})</td>
<td>Saurashtra coast India</td>
<td>0.86</td>
<td>35.39</td>
<td>3.25</td>
</tr>
<tr>
<td>Balli et al(^{38})</td>
<td>Mumbai waters, India</td>
<td>1.225</td>
<td>25.5</td>
<td>-</td>
</tr>
<tr>
<td>Amin(^{72})</td>
<td>Neritic waters of Bangladesh</td>
<td>1.50</td>
<td>24.48</td>
<td>3.50</td>
</tr>
<tr>
<td>Mustafa et al(^{44})</td>
<td>Kutubdia channel of Bangladesh</td>
<td>1.5</td>
<td>24.48</td>
<td>3.27</td>
</tr>
<tr>
<td>He et al(^{45})</td>
<td>Min River Estuary, East China Sea</td>
<td>0.94</td>
<td>26.9</td>
<td>3.27</td>
</tr>
<tr>
<td>Liao &amp; Lin(^{34})</td>
<td>Taiwan</td>
<td>1.30</td>
<td>45.05</td>
<td>-</td>
</tr>
<tr>
<td>Present study</td>
<td>Pakistan Arabian Sea</td>
<td>0.610</td>
<td>29.4</td>
<td>2.604</td>
</tr>
</tbody>
</table>

K = growth curve, \(L_\infty\) = Length infinity, \(\phi\) = growth performance index
Conflict of Interest

The authors declare that they have no competing or conflicts of interest to influence the work reported in this paper.

Author Contributions

MTK and MY: Conceptualization, Formal analysis, Funding acquisition, Investigation, Resources, Software, Supervision, Roles/Writing - original draft; MAK, SBH, AMM, MM and MAD: Writing - review & editing.

References


