Polarographic Study of Zn(II)-Tryptophan System

J. C. Kohtari, Mukhtar Singh & S. K. Jha

Department of Chemistry, Agra College, Agra

Received 9 March 1976; revised 24 December 1976; accepted 6 January 1977

Polarographic behaviour of Zn(II) in the presence of L-tryptophan and NaClO₄ as supporting electrolyte has been studied. The system yields two waves, however, the second is masked by a maximum at low tryptophan/Zn(II) ratios. The maximum disappears on increasing the [tryptophan] but at this stage the second wave is considerably suppressed and is finally eliminated on further increase of tryptophan/Zn(II) ratio. The first wave which represents an irreversible electrode process is due to Zn(II)-tryptophan complex. The potential dependent heterogeneous rate constant \(k_{h} \) is related to \(E \) by the following two relations:

\[
\frac{1}{2} + k_{h} = k_{0} \exp \left[-a_{m}F(E + 0.2412) \right] \quad (1)
\]

\[
\frac{1}{2} + k_{h} = \frac{kT}{h} \exp \left[\frac{-2G + a_{m}F(E + 0.2412)}{RT} \right] \quad (2)
\]

Equating the value of \(\log k_{h} \) at \(E = 0 \) from the two relations we get \(AG^\circ \) (kcal) at 25°C and is obtained by the relation (3):

\[
AG^\circ = \frac{-5706}{4 \times 18} \left[\log k_{h} - 8.18 a_{m} - 6.79 \right] \quad (3)
\]

Zn(II) yields a single well defined wave with \(E_{1/2} = -1.0365 \) V (versus SCE) and slope 0.040 V in 0.1 M NaClO₄. On the addition of tryptophan to the system [1 mM Zn(II), 1 mM tryptophan and 0.1 M NaClO₄] the following significant changes are observed in the current-potential curves:

(a) \(E_{1/2} \) is shifted to more negative potential and becomes 0.106 V.

(b) The wave becomes more drawn out with slope = 0.095 V.

(c) The wave is closely followed by a maximum. However, it is not on the rising portion and thus does not interfere with the quantitative study of the wave.

As the tryptophan/Zn(II) ratio is increased keeping Zn(II) constant at 1 mM, the wave records a gradual shift towards more negative potentials till [tryptophan] reaches 5 mM. There is no change at [tryptophan] = 6 mM. This is followed by a positive shift at 7 mM and between [tryptophan] 7 mM to 20 mM, the \(E_{1/2} \) remains practically constant.

The height of the maximum gradually decreases with an increase in [tryptophan] till 4 mM and from 4 mM to 6 mM it is reduced to a rounded hump. At 7 mM the rounded hump also disappears and in its place a small second wave appears which changes neither in shape nor in position till 15 mM tryptophan \((t_{d} = 1.088 \) and \(-E_{1} = 1.225 \) V). However, this second wave disappears completely at 20 mM tryptophan.

The fact that on the addition of tryptophan the \(E_{1} \) is shifted to more negative potentials and
likely to bring changes in double layer structure which may lead to a positive shift in experimental conditions are in progress. However, the reliable quantitative study of this second wave is very much reduced rendering a zwitterion formation) and also surface-active is quite complete eliminated. Studies regarding the origin, and possibly because of this the height of the maximium gradually disappears and as the \([\text{tryptophan}] \) is increased in the present stage doubtful. At 20 mM tryptophan it is rather high (7 X 10^(-11)).

Tryptophan being charged species in solution (due to concentration of the maximium suppressor (i.e. tryptophan) at this stage is rather high (7 X 10^(-11)). The role of amino acids as maximum suppressors is already known and as the [tryptophan] is increased in the present study the maximum gradually disappears and the second wave can be observed. However, the concentration of the maximum suppressor (i.e. tryptophan) at this stage is rather high (7 X 10^(-11)) and possibly because of this the height of the second wave is very much reduced rendering a reliable quantitative study of this second wave at this stage doubtful. At 20 mM tryptophan it is completely eliminated. Studies regarding the origin, nature and kinetics of this wave under alternative experimental conditions are in progress.

The positive shift of the \(E_1 \) (first wave) at [tryptophan] > 6 mM may be attributed to the double layer effect due to high [tryptophan]. Tryptophan being charged species in solution (due to zwitterion formation) and also surface-active is quite likely to bring changes in double layer structure which may lead to a positive shift in \(E_1 \).

table 1 - Irreversibility and Kinetic Parameter Data

<table>
<thead>
<tr>
<th>[Tryptophan] (mM)</th>
<th>(E_{1/2} - E_{1/2})</th>
<th>By Meites and Israel treatment &(\Delta G)</th>
<th>&(h_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 100</td>
<td>0.130</td>
<td>0.45</td>
<td>8.3 - 10^(-11)</td>
</tr>
<tr>
<td>2 100</td>
<td>0.100</td>
<td>0.46</td>
<td>8.5 - 10^(-11)</td>
</tr>
<tr>
<td>3 100</td>
<td>0.075</td>
<td>0.43</td>
<td>8.0 - 10^(-11)</td>
</tr>
<tr>
<td>4 0.100</td>
<td>0.070</td>
<td>0.43</td>
<td>8.0 - 10^(-11)</td>
</tr>
<tr>
<td>5 0.095</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>6 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>7 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>8 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>9 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>10 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>11 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>12 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
<tr>
<td>13 0.090</td>
<td>0.35</td>
<td>8.0 - 10^(-11)</td>
<td></td>
</tr>
</tbody>
</table>

\(* \)a is derived from the relation \(E_{1/2} - E_{1/2} = 0.0564/a \) and when \(a < 0.5 \) at \(n = 2 \) is regarded as a condition for total irreversibility.

that the slope increased significantly rendering the electrode process from near reversible to totally irreversible (Table 1), indicated a change in basic nature of the reaction and in analogy with Ni(II)-tryptophan system it can be concluded that the first wave corresponds to an irreversible reduction of Zn(II)-tryptophan complex. Similar to Ni(II)-tryptophan system reported by Lal and Christian there is a second wave also but it is masked by a maximum at lower [tryptophan]. The role of amino acids as maximum suppressors is already known and as the [tryptophan] is increased in the present study the maximum gradually disappears and the second wave can be observed. However, the concentration of the maximum suppressor (i.e. tryptophan) at this stage is rather high (7 X 10^(-11)) and possibly because of this the height of the second wave is very much reduced rendering a reliable quantitative study of this second wave at this stage doubtful. At 20 mM tryptophan it is completely eliminated. Studies regarding the origin, nature and kinetics of this wave under alternative experimental conditions are in progress.

The positive shift of the \(E_1 \) (first wave) at [tryptophan] > 6 mM may be attributed to the double layer effect due to high [tryptophan]. Tryptophan being charged species in solution (due to zwitterion formation) and also surface-active is quite likely to bring changes in double layer structure which may lead to a positive shift in \(E_1 \).

Authors are thankful to the Principal, Agra College, Agra, for providing the necessary facilities.

References

Thermodynamic Functions & Stability Constants of Some Rare Earths with Phloroglucinol

SANTOSH D. MAKHIJANI* & SATENDRA P. SANGAL†
Laxminarayan Institute of Technology, Nagpur

Received 27 August 1976; accepted 12 January 1977

Stability constants of the complexes of phloroglucinol with Sc(III), Y(III), La(III), Ce(III), Pr(III) and Nd(III) have been evaluated in aqueous medium at \(\mu = 0.02M \) (NaClO4), employing Bjerrum-Calvin pH-titration technique, as used by Irving and Rossotti. The values of overall changes in free energy (\(\Delta G \)), enthalpy (\(\Delta H \)) and entropy (\(\Delta S \)) accompanying the complex formation have been reported. The order of stability constant is Sc(III) > Y(III) > La(III) and La(III) < Ce(III) < Pr(III) < Nd(III).

In this note the thermodynamic functions and stability constants of some rare earths with phloroglucinol have been evaluated in aqueous medium.

The methods used were the same as described in previous communications. The practical proton-ligand stability constants and metal-ligand stability constants at various temperatures were obtained employing Bjerrum-Calvin pH-titration technique, as used by Irving and Rossotti. All the chemicals used were of AR grade. The stock solution (0.01M) of phloroglucinol (E. Merck) was prepared in CO2-free doubly distilled water. All other solutions were prepared as described in previous papers. Titration were carried out under N2 atmosphere and temperature was maintained with an accuracy of \(\pm 0.1^\circ C \). Titrations were carried out with 0.90M NaOH as in previous papers at \(\mu = 0.02M \) (NaClO4); total volume was 100 ml.

The proton-ligand and metal-ligand stability constants were calculated as described in previous papers. The values of stability constants obtained by interpolation at half \(n \)-values method are given in Table 1.

The temperature coefficient and Gibbs-Helmholtz equation were used to determine the overall changes in free energy (\(\Delta G \)), enthalpy (\(\Delta H \)), and entropy (\(\Delta S \)). The total free energy change was obtained from the equation \(\Delta G = -RT \ln \beta \), where \(\beta \) is the

*Present address: National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020.
†Author to whom correspondence may be addressed.