metal ions in the present case are also bonded through one nitrogen and one oxygen atom of the ligand molecule. This is supported by the slight shift to higher atomic numbers in the curve ΔH_f (heat of complexation) against atomic number as compared to the curve of ΔH_f (heat of hydration of metal ion) against atomic number. A straight line joining Mn and Zn represents the situation in the absence of crystal field stabilization.

The order of stabilities of other transition metal ion complexes is: $\text{Cr}^{3+} > \text{Cu}^{2+} > \text{Co}^{2+} > \text{Ni}^{2+} > \text{Pr}^{3+} > \text{La}^{3+}$.

In general, SMA complexes are less stable than SMAP complexes because ϕK_n of SMA is lower than ϕK_n of SMAP.

The authors thank Prof. C. N. Kachru, Head, Chemistry Department, Kashmir University, for providing facilities.

References

Stability Constants of Complexes of VO(II), Cu(II), Co(II) & Ni(II) with 2-Hydroxy-1-naphthaldehyde-4-m-chlorophenyl-3-thiosemicarbazone

Y. N. Bhatt & K. J. Shah

Department of Chemistry, Saurashtra University, Bhavnagar

Received 3 March 1976; accepted 12 May 1976

The stability constants of the complexes of VO(II), Cu(II), Co(II) and Ni(II) with 2-hydroxy-1-naphthaldehyde-4-m-chlorophenyl-3-thiosemicarbazone have been determined in 70% acetonitrile employing modified form of Irving and Rossotti titration technique at 25 °C ± 0.1°. The order of stability in terms of log K_1 is $\text{VO}^{2+} > \text{Cu}^{2+} > \text{Co}^{2+} > \text{Ni}^{2+}$.

TABLE 1—Stability Constants of the Complexes in 70% Acetonitrile

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>log K_1</th>
<th>log K_2</th>
<th>log β_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^{2+}$</td>
<td>9.54 ± 0.05</td>
<td>9.46 ± 0.05</td>
<td>19.00 ± 0.05</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>9.27 ± 0.05</td>
<td>9.07 ± 0.05</td>
<td>18.34 ± 0.05</td>
</tr>
<tr>
<td>VO$^{2+}$</td>
<td>9.83 ± 0.05</td>
<td>9.68 ± 0.05</td>
<td>18.91 ± 0.05</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>9.29 ± 0.05</td>
<td>8.74 ± 0.05</td>
<td>17.66 ± 0.05</td>
</tr>
</tbody>
</table>

The practical proton-ligand stability constant ($\log \beta_{11}^H$) for the ligand was calculated with the help of \bar{n}_A values at different H values (ϕ-meter readings). \bar{n}_A is then calculated by the method of Irving and Rossotti as adopted by Jabalpurwala et al. The value of $\log \beta_{11}^H = 9.82 ± 0.05$ was then obtained from linear plots of $\log \bar{n}_A / |1 - \bar{n}_A|$ against B and using relation (1)

$$\log \beta_{11}^H = B + \log |1 - \bar{n}_A|$$

For metal-ligand stability constants \bar{n} and ϕL were calculated by the method of Jabalpurwala et al. The values of $\log K_1$ were calculated by half integral method while those of $\log K_2$ were calculated using Olerup's least squares methods since there was not much difference between $\log K_1$ and $\log K_2$.

The average stability constants are given in Table 1. The order of stability in terms of log K_1 is $\text{VO}^{2+} > \text{Cu}^{2+} > \text{Co}^{2+} > \text{Ni}^{2+}$.

The authors are thankful to Dr. K. A. Thaker, Head, Department of Chemistry, Saurashtra University, Bhavnagar, for providing laboratory facilities and to the CSIR, New Delhi, for awarding scholarships (to Y.N.B., R.S.P. and K.K.P.).

References

