Quasi Switched Capacitor based integrated Boost Series Parallel Fly-back Converter for energy Storage Applications

S L V Sravan Kumar 1,2*, N R sankara Reddy 2 and M Vijay Kumar 3

1,3Department of EEE, JNTUA College of engineering, Ananthapuramu, AP-515001 India
2Department of EEE, G Pulla Reddy Engineering College, Kurnool, AP-518346, India

Received 25 April 2018; revised 4 February 2019; accepted 13 June 2019

A quasi-Switched Capacitor technique (QSC) is used to control the switch in Interconnected Boost Series Parallel Fly-Back Converter (IBSPFC). The QSC based IBSPFC does not require any snubber circuits for all the MOSFET switches presented at primary and secondary side and power can also be transferred even if one the winding gets damage. The primary side winding of the fly-back transformer is coupled in series across with bulk capacitor to minimize switch voltage stress and the secondary winding of the 1:1 fly-back transformer is coupled with dc voltage source, three switches and capacitor which forms a Quasi switched capacitor technique. Working techniques of quasi-switched capacitor with IBSPFC have been introduced. A 75v input, 100v output and DC-DC isolated Converter switching at frequency of 100 kHz is modeled using FPGA SPARTAN6LX9 and experimental results have been presented.

Keywords: Quasi Switched Capacitor (QSC), Fly-Back Converter, Boost converter, IBSPFC

Introduction

At Present tendency, solar energy is attracting one of the well-organized resources in the area of renewable energy. As solar energy is freely available in the nature at free of cost helps to create a lot of electricity for residential, industrial, domestic, household purpose. As Solar, energy is obtainable universally the employment of solar panels to create electricity is helpful to produce electrify in rural areas. No translation devices is produces sins of disposal of direct dc current from solar energy. Series parallel dc-dc converter is an interconnected converter and module scheme suggested due to justification of solar power system because of advantages of low power handling capability and less time and lowcost installation. Compare to two stage transformation single stage Transformation is more well-organized not only due to less cost less preservation but can operate in both continuous and discontinuous mode 1-3. Though high switch current in discontinuous mode make it advantages than two stage transformation.

Interconnected boost - series Fly- back converter (IBSPFC)

In IBSPFC with quasi switch converter (QSC) has been suggested 4-5. The connects IBSPFC on primary side and QSC on secondary side of transformer. The advantage of QSC is the soft switching technique used by the convertor help to improve the overall efficiency of the isolated quasi switched capacitor dc-dc converter and the MOSFET switch handles currents of both inductor in boost converter and fly-back circuit simultaneously. Here the advantage of both the converter is utilized to increase the capability of the convertor 6-8. The research study along with experimental results of IBSPFC with QSC is presented in this paper for closed loop control 9-11. The design considerations for inductor in boost circuit, quasi switched capacitor and output capacitor are evaluated 12-13. This presents design of QSC based IBSPFC operating at 100 kHz with DC input voltage magnitude of 25V on primary side, producing 50V and 100V at secondary side and at load with 100W of output power.

Working Methods of QSC based IBSPFC

The circuit diagram for IBSPFC is shown in Figure.1(a) and the corresponding equivalent circuits working under two various modes of operations are presented in Figure. 1(b&c). The pulse waveforms of switches and the respective current waveforms are shown in Figure. 1(d).In mode 1 \(0 < t < t_1\) : Figure. 1(b): When the switches \(S_1, S_2, S_3\) are in ON condition. The current starts flowing through primary \((V_{in}-L-S_1)\)

*Author for Correspondence
E-mail: sravanslv@gmail.com
Therefore the boost inductor current starts increasing. Capacitor C_1', C_2' will be discharging through $(C_1'-S_1-D_2) \& (C_2'-D_3-S_1)$ and supplied to load. On secondary side C_1, C_3 will be charging and C_2 will be discharging though $(C_2-S_2-V_{\text{bat}}-C_3-S_3-C_2')$. In mode 2 [$t_1 < t < t_2$]: Figure.1(c) the switch S_1, S_2, S_3 are switched off and S_4 switched on. In this mode of operation, the current flows through the path of $+V_{\text{in}}-L-C_1'-D_1-C_2'-(V_{\text{in}})$. In this mode, the discharging of boost inductor takes place through the capacitors and diode D_2 and on
secondary side capacitor C_1, C_3 are discharging and C_2 is charging through $C_2-V_{\text{bat}}-S_4-(+C_2)$.

Soft Switching Analysis

The output side three Switches are realized soft switching at on state transient. Since the departed time linking the managed signals of S_2, S_3, S_4. The diodes across the switching are not conduct therefore diodes conduction losses are nil. Switch S_2, S_3 drain and source terminals adding minor Capacitor, gradually the voltage across the switch during the off momentary, the drain to source voltage built up to the fixed condition rate after the switch current is reduce to zero. The switches S_1, S_2, S_3 are off condition ZVS isrealized\(^{13}\). Output side circuit battery to load power transferring directly. Soft Switching Analysis using in this circuit humanizing good organization and through double input maneuver.

Mathematical Calculations

Mathematical calculations is obtained for the QSC based IBSPFC. Design specifications are $V_s=25V$, $V_o=100V$, $I_o=1A$, $R=100\Omega$, $f_s=100KHZ$, $P_o=100W$, $V_{\text{bat}}=50V$ and Battery=50V. The design calculations for QSC based IBSPFC are presented below based on the assumption that primary side source and secondary side battery will share total load.

Boost converter Output Voltage and Inductor Current

The boost output voltage (V_B) of a boost converter is given by the expression $V_s/(1-D)$. In the above equation, V_s represents input voltage of magnitude 25V and D represents the duty cycle of value 0.5. Upon substituting these values, the boost output voltage is equal to 50V. Similarly, the expression for Inductor current (I_L) is given by $I_s/(1-D)$ where the term I_o represents output current. The magnitude of inductor current is equal to 2A for $I_o = 1A$ and $D = 0.5$.

Boost Inductance

The value of inductor used in boost converter is obtained by using the following equation:

$$L_B = \frac{V_s D}{f_s \Delta I} \quad \ldots (1)$$

Where f_s represents the switching frequency of value 100Hz and ΔI represents the current ripple and is taken as 0.05A. The value of boost inductor is equal to 3.5mH upon the substituting the above values.

Boost Capacitance

The value of boost capacitance is obtained by using the equation:

$$C_B = \frac{D}{2 f_s R} \quad \ldots (2)$$

Where R represents the load resistance of value 100ohms. Upon substituting the values the boost capacitance value is equal to 25nF. An approximate value of 100µF is taken for practical case.

Filter Inductance

From the Fly-back Converter, to obtain the value of filter inductance (L_f) the following equation is used:

$$P = \frac{V_o^2 D^2}{2 L_f f_s} \quad \ldots (3)$$

Where P_o represents the output power which is taken as 100w. The value of filter inductance is equal to 31.25µH. An approximate value of 40 to 50µH is chosen for practical case.

Secondary side Capacitances

The values of capacitances used on the secondary side are taken as $C_1=C_2=C_3=100\mu F$. The magnitude of voltage across capacitors during mode I and mode II are obtained as given below: During Mode I the voltage across capacitor C_1 is equal to secondary winding voltage i.e., $V_{c1}=V_{\text{Secondary}}=50V$. The voltage across capacitor C_3 is equal to output voltage i.e., $V_{c3}=V_o=100V$. And the voltage across capacitor C_2 is equal to the difference between the voltages of capacitor C_1 and battery (V_{bat}). The value is equal to 50V. During Mode II the voltage across capacitor C_3 is equal to the sum of the voltages across capacitor C_2 and battery (V_{bat}) which is equal to 100V.

Voltage across the Switches

During mode-I, the switch S_4 is in off condition and the remaining switches S_1 to S_3 are in ON condition. The voltage which appears across S_3 switch is equal to battery voltage which is equal to 50V. During mode-II the switch S_4 is turned on and the switches S_1, S_2 and S_3 are turned off. The voltages which appears across these switches are given by the as: $V_s = V_{\text{bat}} = 50V$, $V_{s_2} = V_{\text{bat}} = 50V$; $V_{s_3} = V_{c_3} - V_{c_2} = 50V$
Experimental Results
The experimental results of QSC based IBSPFC with voltage mode control using FPGA are obtained. Figure 2(a) shows experimental setup of QSC based IBSPFC; Figure 2(b) shows the Switch S2 Zero Voltage, Zero Current and PWM Pulse, Figure 2(c) Switch S3 Zero Voltage, Zero Current and PWM Pulse, 2(d) Switch S4 Zero Voltage, Zero Current and PWM Pulse. Figure 2(e) shows Output Current1A. Figure 2(f) shows Output Voltage100V.

Fig. 2 — (a) Home Based kit IBPFC with QSC, (b) Switch S2 Zero Voltage, Current, Pulse, (c) Switch S3 Zero Voltage, Current, Pulse, (d) Switch S4 Zero Voltage, Current, Pulse, (e) Output Current1A, (f) Output Voltage100V, (g) Battery input Current0.7A
Figure 2(h) shows the secondary side battery input current 0.7A.

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductor</td>
<td>100 KHz, 3.5mH</td>
<td>10A</td>
</tr>
<tr>
<td>MOSFET</td>
<td>K2611,Toshiba</td>
<td>900v, 9A</td>
</tr>
<tr>
<td>Diode</td>
<td>MUR3060</td>
<td>600V, 30A</td>
</tr>
<tr>
<td>Capacitor (Primary)</td>
<td>63V, 100μF</td>
<td></td>
</tr>
<tr>
<td>Capacitor (Secondary)</td>
<td>100μF, 100V</td>
<td></td>
</tr>
<tr>
<td>Transformer (Ratio)</td>
<td>1:1 50V/50V</td>
<td></td>
</tr>
<tr>
<td>Transformer Inductance</td>
<td>45μH</td>
<td></td>
</tr>
<tr>
<td>Protection Circuit</td>
<td>TL082&4027</td>
<td></td>
</tr>
<tr>
<td>FPGA</td>
<td>SPARTRAN6LX9</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

This paper presents analysis and working methods of QSC based IBSPFC. With this proposed connection of boost converter and fly back converter, the observations made are low switch current stress, tight voltage regulation with which the efficiency is improved. For the various input voltage levels of 25V, 75V and 100V the simulation part is done for the developed prototype which produces an output power of 100w at switching frequency of 100KHz. The converter has the ability to operate at 200w also. The applications of this developed model are battery charging and series connection LED drives etc. With the combination of IBSPFC with QSC, the efficiency of the converter increases that i.e. 91% and because of soft switching used in QSC helps to increase overall converter efficiency. The future scope of this converter is to improve the power factor of the converter and maximum power point tracking by using different algorithms.

References