Effect of alpha-tocopherol supplementation on renal oxidative stress and Na+/K+-adenosine triphosphatase in ethanol treated Wistar rats

Maneesh Mailankota*, H Jayalekshmi b, Amit Chakrabarti c, Neha Alang d & D M Vasudevan d
aMelaka Manipal Medical College, Manipal 576 104, India, bAmrita School of Biotechnology, Amritapuri 690 525, India, cSikkim Manipal Institute of Medical Sciences, Gangtok 737 102, India; dAmrita Institute of Medical Sciences, Cochin 662 026, India

Received 20 October 2008; revised 12 March 2009

Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.

Key words: Alpha-tocopherol, Ethanol, Kidney, Oxidative stress, Na+/K+ -ATPase

Alcohol consumption has deleterious effects on kidney. It is known to induce oxidative stress, a condition associated with an increased rate of cellular damage induced by reactive oxygen species. Normally antioxidants quench these reactive oxygen species and protect the cell. Ethanol inhibits (Na+/K+) - ATPase in vitro, a P-type cation pump that regulates active transport of Na+ and K+ ions. Acute ethanol intoxication causes oxidative challenge and down-regulation of (Na+/K+)-ATPase in lung. However its effect on renal (Na+/K+)-ATPase is not clear. Oxidative modifications especially at –SH groups of (Na+/K+)-ATPase by oxidative stress has been suggested, a molecular mechanism that could operate in vivo during ethanol intoxication. In addition, the authors believe that ethanol induced lipid peroxidation might also be playing a major role in enzyme inactivation. The study was undertaken to investigate the influence of alpha-tocopherol (AT) supplementation, a lipid soluble dietary antioxidant on renal oxidative stress and (Na+/K+)-ATPase activity.

Chemicals—Chemicals used were of analytical grade and purchased from Merck Ltd, India, Sisco Research Laboratories Ltd, India and Sigma Chemicals, USA.

Drug—Vitamin E 400mg/cap (Tocofer-400, Torrent Pharmaceuticals Ltd, India)

Animals—Male Albino rats of Wistar strain (10-12 weeks old weighing 100-120 g were housed in plastic cages of size 35×22.5×20cm (6 rats in each cage) in a well-ventilated room at 22° ±2ºC with a 12-hr light/dark cycle. All rats had free access to a standard diet and tap water. The Animal Ethics Committee, Sikkim Manipal Institute of Medical Sciences, Gangtok approved the procedures used.

Experimental design—The animals were divided into following 5 groups of 6 rats each in a group:
Gr I (Control): 1g double distilled water/kg body wt/day for 4 weeks, orally; Gr II: Ethanol treated rats (1.6g ethanol/kg body wt/day for 4 weeks, orally); Gr III: Ethanol + AT treated rats (1.6g ethanol + 80mg AT/kg body wt/day for 4 weeks, orally); Group IV: Ethanol followed by AT treated rats (1.6g ethanol/kg body wt/day for 4 weeks, followed by 80mg AT/kg body wt/day for next 4 weeks, orally); Group V: Ethanol treatment (1.6g ethanol/kg body wt/day, orally) for 4 weeks and followed by 4 weeks abstinence.

The dose of ethanol was determined as described previously. Ethanol and alpha-tocopherol (AT) were freshly dissolved in double distilled water to get desired concentration.

Rats were weighed and killed by cervical dislocation under light ether anesthesia. Kidneys were removed, cleaned of the adhering tissues and weighed. Tissues were immediately processed for biochemical analysis and all parameters were estimated on the same day.

Biochemical analysis—Total protein, extent of lipid peroxidation, reduced glutathione (GSH), glutathione disulfide (GSSG), superoxide dismutase (SOD) (EC 1.15.1.1), catalase (EC 1.11.1.6), glutathione peroxidase (GPx) (EC 1.11.1.9) and (Na+/K+) -ATPase activity were estimated.

*Correspondent author
E-mail: manu_only@hotmail.com
Statistical analysis—were performed by Student’s t test and significance of difference was set at \(P<0.05 \).

Chronic ethanol intoxication resulted in high extent of lipid peroxidation and reduction in tissue GSH and GSH/GSSG ratio (Table 1). In addition activities of enzymatic antioxidants like catalase, SOD and GPx, and (Na\(^+\)/K\(^+\))-ATPase were reduced on ethanol treatment (Table 2). Exogenous AT, to some extent could protect kidney from ethanol induced oxidative challenge and improve renal (Na\(^+\)/K\(^+\))-ATPase activity. Preventive option was better than curative. Tissue thiobarbituric acid reactive substances (TBARS) level was significantly low in drug treated groups in comparison to ethanol treated group, and renal GSH and GSH/GSSG, and catalase, SOD and GPx activities were improved on AT administration.

Need for AT during chronic alcohol consumption is enhanced, due to its participation in oxidoreducting processes connected with ethanol metabolism, which leads to its irreversible destruction\(^{13}\). Exogenous AT effectively protected kidney from reactive oxygen species (ROS) as it considerably reduced the extent of lipid peroxidation. Chronic ethanol treatment decreased GSH and reversed GSH/GSSG ratio and it was improved significantly by AT supplementation. Increase in GSH content may be due to activation of synthesis or decreased utilization. The later possibility is supported by improved catalase and SOD activity in AT treated rats than ethanol treated animals. The tissue GSH content reflects its potential for (i) detoxification (ii) preserving the proper cellular redox balance and (iii) its role as a cellular protectant\(^{14}\). Increased GSH may be channeled as a substrate for GPx, the activity of which was improved on AT treatment. GPx plays a significant role in the peroxyl scavenging mechanism and in maintaining functional integration of the cell membranes\(^{15}\).

Reduced (Na\(^+\)/K\(^+\))-ATPase activity in ethanol intoxicated rats was brought back to normal by AT treatment. It could be either due to the direct stimulatory effect and/or antioxidant effect of the vitamin. The latter possibility is supported by the fact that AT reduced renal TBARS and restored scavenger system. Studies in erythrocytes from essential hypertensive have shown

<table>
<thead>
<tr>
<th>TBARS(^{8})</th>
<th>GSH(^{5})</th>
<th>GSSG(^{5})</th>
<th>GSH/GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>26.37±1.30</td>
<td>1.364±0.06</td>
<td>0.241±0.024</td>
</tr>
<tr>
<td>Ethanol</td>
<td>42.81±2.13(^{a})</td>
<td>0.672±0.02(^{a})</td>
<td>0.443±0.026(^{a})</td>
</tr>
<tr>
<td>Ethanol + AT</td>
<td>31.0±1.12(^{ab})</td>
<td>9.24±0.09(^{abc})</td>
<td>0.305±0.02(^{abc})</td>
</tr>
<tr>
<td>Ethanol followed by AT</td>
<td>32.3±1.12(^{abc})</td>
<td>9.01±0.02(^{abc})</td>
<td>0.318±0.02(^{abc})</td>
</tr>
<tr>
<td>Ethanol + abstinence</td>
<td>40.27±1.56(^{a})</td>
<td>0.691±0.06(^{a})</td>
<td>0.413±0.027(^{a})</td>
</tr>
</tbody>
</table>

\(P \) values: <0.05 compared with \(^{a}\) control, \(^{b}\) ethanol treated, and \(^{c}\) abstinent group

\(^{8}\) nanomol H\(_2\)O\(_2\) consumed/mg tissue/min

\(^{5}\) micromol/g

<table>
<thead>
<tr>
<th>SOD(^{7})</th>
<th>Catalase(^{5})</th>
<th>GPx(^{5})</th>
<th>(Na + K)-ATPase(^{6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>11.18±0.73</td>
<td>0.33±0.01</td>
<td>0.387±0.015</td>
</tr>
<tr>
<td>Ethanol</td>
<td>7.39±0.55(^{a})</td>
<td>0.16±0.02(^{a})</td>
<td>0.172±0.012(^{a})</td>
</tr>
<tr>
<td>Ethanol + AT</td>
<td>9.81±0.72(^{abc})</td>
<td>0.20±0.01(^{abc})</td>
<td>0.214±0.01(^{ab})</td>
</tr>
<tr>
<td>Ethanol followed by AT</td>
<td>9.80±0.4(^{abc})</td>
<td>0.20±0.01(^{abc})</td>
<td>0.208±0.01(^{a})</td>
</tr>
<tr>
<td>Ethanol + abstinence</td>
<td>7.73±0.12(^{a})</td>
<td>0.17±0.03(^{a})</td>
<td>0.181±0.006(^{a})</td>
</tr>
</tbody>
</table>

\(P \) values: <0.05 compared with \(^{a}\) control, \(^{b}\) ethanol treated, and \(^{c}\) abstinent group

\(^{7}\) micromole/ pyrogallol auto- oxidized/mg protein/min

\(^{5}\) nanomole/ 1-chloro-2,4-dinitrobenzene conjugate formed/mg protein/min

\(^{6}\) micromole/ 1-chloro-2,4-dinitrobenzene conjugate formed/mg protein/min

\(^{8}\) micromole/ Pi/mg protein/hr
on lipid peroxidation and changes in membrane fatty acid composition modulates (Na\(^+\)/K\(^-\))-ATPase activity. In the present study, lipid peroxidation might be a contributing factor in ethanol induced inactivation of (Na\(^+\)/K\(^-\))-ATPase\(^{17}\). Optimal interaction of (Na\(^+\)/K\(^-\))-ATPase with membrane phospholipids is essential, considering that its activity is modulated by microenvironment given by the physicochemical properties of the membranes into which it is inserted\(^{16}\). Restoration of renal (Na\(^+\)/K\(^-\))-ATPase after AT supplementation in ethanol-treated rat may protect the kidney function.

From the results, it concluded that alpha-tocopherol supplementation had protective effect on ethanol induced renal (Na\(^+\)/K\(^-\))-ATPase inactivation. Moreover it also ameliorate the ethanol-induced oxidative stress. Alpha-tocopherol execute its role by modulating free radical production there by preventing lipid peroxidation and/or stimulating (Na\(^+\)/K\(^-\))-ATPase. To answer which one is more important, further investigation is needed.

References