New spinels of scandium have been synthesized in the system
\(\text{ZnFe}_2_x\text{Sc}_x\text{O}_4 \) \((x = 0.2, 0.4, 0.6, 0.8 \text{ and } 1.0)\). The Vegard's rule is not
obeyed for the series. The compounds are semiconductors in the
temperature range 300-650 K. Slight changes in oxygen content of the
 lattice have been suggested on the basis of electrical behaviour and
DTA and TG studies.

In our earlier publication\(^1\) we have reported the crystal
structure of \(\text{ZnSc}_2\text{O}_4 \) as a distorted spinel. In con-
tinuation of this work we have prepared a series of
compounds with chemical formula \(\text{ZnFe}_2_x\text{Sc}_x\text{O}_4 \) \((x = 0, 0.2, 0.4, 0.6, 0.8 \text{ and } 1.0)\), with a view to further
investigating the phenomenon of electrical conduction
in spinel structure, as these compounds may be
considered as solid solutions of \(\text{ZnFe}_2\text{O}_4 \) and \(\text{ZnSc}_2\text{O}_4 \)
spinel.

These compounds were prepared by first intimately
mixing (under acetone) \(\text{ZnO}, \text{Fe}_2\text{O}_3 \) and \(\text{Sc}_2\text{O}_3 \) in the
required molar ratios for getting the desired stoi-
chiometry. The mixture was dried in air. It was heated at
1200°C in a platinum boat for 120 hr. The X-ray
diffraction patterns of the powder samples were ob-
tained using filtered Co K\(_\alpha\) radiation. All the X-ray
diffraction patterns showed a single phase.

For the determination of dc-resistivity, pellets of
1 cm diameter and 0.4 cm thickness were prepared
under a pressure of one tonne in a hydraulic press.
Silver paste\(^1\) was used as the electrical contact ma-
terial. The measurements were carried out in the
temperature range 300-650 K by applying a steady
potential of 5 V across the pellet. An LCR bridge
(Radart 1203) was used for measurement of the
resistivity.

Thermoanalytical studies of the compounds
\(\text{ZnFe}_2\text{O}_4 \) and \(\text{ZnFeScO}_4 \) were carried out on an
automatic derivatograph\(^2\) which recorded TG, DTG
and DTA curves. The derivatograms of the
compounds were taken in static air at the heating rate\(^3\) of
10 K/min using \(\alpha\)-\(\text{Al}_2\text{O}_3 \) as the reference material. The
sample was ground to 325 mesh (44 microns) to allow
retention of the crystallinity. About 1 g of the
compound was used to record derivatogram.

\(^1\) Present address: A.P.C. Division, NEERI, Nagpur 440020

Table 1—Crystallographic Results of the Series \(\text{ZnFe}_2-x\text{Sc}_x\text{O}_4 \)

<table>
<thead>
<tr>
<th>Composition ((x))</th>
<th>Density ((\text{g}/\text{cm}^3))</th>
<th>Lattice constant (a) ((\text{Å}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>5.34</td>
<td>8.43</td>
</tr>
<tr>
<td>0.2</td>
<td>5.22</td>
<td>8.47</td>
</tr>
<tr>
<td>0.4</td>
<td>5.14</td>
<td>8.49</td>
</tr>
<tr>
<td>0.6</td>
<td>5.04</td>
<td>8.52</td>
</tr>
<tr>
<td>0.8</td>
<td>4.95</td>
<td>8.54</td>
</tr>
<tr>
<td>1.0</td>
<td>4.91</td>
<td>8.54</td>
</tr>
</tbody>
</table>

Table 2—Resistivity Data for the System \(\text{ZnFe}_2-x\text{Sc}_x\text{O}_4 \)

<table>
<thead>
<tr>
<th>Composition ((x))</th>
<th>Resistivity ((\Omega\cdot\text{cm})) at 393 K</th>
<th>Temp. range ((\text{K}))</th>
<th>(\Delta E) ((\text{eV}))</th>
<th>Temp. range ((\text{K}))</th>
<th>(\Delta E) ((\text{eV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>(2.4 \times 10^7)</td>
<td>301-562</td>
<td>0.82</td>
<td>632-680</td>
<td>0.36</td>
</tr>
<tr>
<td>0.2</td>
<td>(7.6 \times 10^3)</td>
<td>301-485</td>
<td>0.52</td>
<td>520-655</td>
<td>0.35</td>
</tr>
<tr>
<td>0.4</td>
<td>(7.4 \times 10^4)</td>
<td>301-510</td>
<td>0.62</td>
<td>510-655</td>
<td>0.65</td>
</tr>
<tr>
<td>0.6</td>
<td>(8.0 \times 10^4)</td>
<td>301-515</td>
<td>0.42</td>
<td>515-655</td>
<td>0.69</td>
</tr>
<tr>
<td>0.8</td>
<td>(5.4 \times 10^4)</td>
<td>301-537</td>
<td>0.59</td>
<td>537-653</td>
<td>0.45</td>
</tr>
<tr>
<td>1.0</td>
<td>(2.4 \times 10^6)</td>
<td>301-450</td>
<td>0.55</td>
<td>521-655</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Fig. 1—Plot of lattice parameter versus composition of
\(\text{ZnFe}_2\text{Sc}_4\text{O}_4 \).

X-ray crystallographic results are listed in Table 1.
The results show that all the compounds crystallize in a
spinel structure. The variation of lattice constant \(a\)
versus composition \(x\) is shown in Fig. 1 which shows
that lattice constant increases from \(x = 0\) to \(x = 0.8\).

The variation of resistivity with \(1/T\) is shown for
\(\text{ZnFe}_2\text{O}_4 \) in Fig. 2 and for other compounds in Fig. 3
\((x = 0.2 \text{ to } 1.0)\). The values of activation energy at
different temperatures are listed in Table 2.

The variations of energy of activation \(\Delta E\) \((301-\)
450 K) and \(\rho_{RT}\) (r.t.r.) with composition \((x)\) are shown
in Figs 4 and 5 respectively.

The compounds \(\text{ZnFe}_2\text{O}_4 \) \((x = 0)\) and
\(\text{ZnFeScO}_4 \) \((x = 1)\) show exotherms at 588 and 653 K.
The usual problem of site and charge distribution does not arise as Zn$^{2+}$ ions have very strong A site preference6 and the valencies of Zn and Sc are definite. Thus the ionic distribution will be Zn$^{2+}$[Fe$^{3+}$Sc$^{3+}$]O_4.

Our results on electrical resistivity show that all the compounds are semi-conductors in the temperature range 300-650 K. The resistivity at room temperature for the compounds ZnFe$_2$O$_4$(x = 0) and ZnFeScO$_4$(x = 1) is comparable and in general it increases from the composition x = 0.2 to x = 1.0.

The study of variation of electrical resistivity with temperature (Fig. 3) shows that for all the compounds the slope of the plot of logρ/vs $1/T$ changes at 500 ± 40 K, and each compound shows two values of ΔE (Table 2).

For understanding the intricate electrical behaviour of these compounds, DTA and TG curves of two compounds (x = 0 and x = 1) have been studied. The compound ZnFe$_2$O$_4$ shows an exotherm at 588 K while ZnFeScO$_4$ shows it at 653 K with reaction intervals of 498-913 and 493-893 K respectively. Thus, the solid state reaction of the type A (solid)+B (solid)+C (gas) can be suggested in view of the slight oxidative degradation of these compounds in the temperature range 490-900 K.

The broad peaks observed in DTA curves indicate higher value of the order of that observed for reactions involving oxidative degradation as suggested by Kissinger7. Thus, the possibility of slight changes in oxygen content of these compounds can be kept in view with possible structural formula ZnFe$_{2-x}$Sc$_x$O$_{4-x}$ in the temperature range 490-900 K.

The observed derivatographic results can be explained using statistical thermodynamic model8 of condensed metals in order to explain the electrical properties of these compounds. Thus, the changes of
activation energy of these compounds above 500 K are due to evolution of oxygen from the lattice, and may also be due to formation of defects and reduction of metal ions.

References
3 Mackenzie R C & Ferguharson K R, Compt Rend, XIX Cong Geol Inst (Algeria), 18 (1952) 183.
6 Miller A J, Appl Phys, 30 (1959) 245.