Mixed ligand complexes of copper(II), nickel(II), cobalt(II) & zinc(II) with iminodiacetic acid as a primary ligand & imidazole as a secondary ligand

P C Sinha, Vimal K Saxena, N B Nigam & M N Srivastava*
Department of Chemistry, University of Allahabad, Allahabad 211 002
Received 24 March 1987; revised 23 May 1988; accepted 7 August 1988

The stability constants of the title mixed ligand complexes determined potentiometrically in aqueous medium, follow the order: Cu > Zn > Ni > Co. K_{MLA} values are greater than K_4 (Im) for simple imidazole complexes. At higher concentrations of imidazole (MLA systems), Cu(II) and Ni(II) form both MLA and MLA$_2$ types of complexes, but with Co(II) and Zn(II) only MLA is formed.

Mixed ligand complexes containing iminodiacetic acid (IMDA) or imidazole have been investigated by many workers$^1-3$. Sigel3 has observed that the participation of an imidazole group favours the formation of more strong mixed ligand complexes than that of an amino group, if an O donor ligand is also involved. In our earlier publication4 we studied the mixed ligand complexes of Cu(II), Ni(II), Co(II) and Zn(II) with aspartic acid or glutamic acid as the primary ligands, and imidazole as the secondary ligand. In the present note, the stability constants of the title mixed ligand systems have been determined potentiometrically in aqueous medium.

Experimental

Imidazole (Sigma) and iminodiacetic acid (Sigma) were used as such. Other reagents, apparatus and procedure were the same as described earlier4.5. All the titration mixtures also contained a fixed amount (one equivalent) of free perchloric acid. The ionic strength was kept constant at 0.1 M with sodium perchlorate.

Similar titration curves have been obtained for all the mixed ligand systems: M(II)-iminodiacetic acid-imidazole. The titration curve for the binary 1:1 Cu(II)-iminodiacetic acid system (ML) (Fig. 1) shows an inflexion at $a = 2$ (pH 4.8.5), beyond which it is however drifted below. This indicates the formation of neutral ML and the hydroxo chelate ML(OH) respectively. The mixed ligand MLA titration curve shows two inflexions at $a = 2$ and 3 at pH 5 and 8.5 respectively. It is also coincident with the MLA curve up to $a = 2$, but beyond that the MLA curve runs below the ML curve. In the 1:1 Cu(II)-imidazole system, the titration curve shows an inflexion at $a = 1$, followed by a buffer region ($a = 1 - 2$) and the final inflexion appears at $a = 3$. In the ternary system the solution remains clear throughout the titration, whereas in ML system a turbidity appears at $a = 3$ ($pH = 10$); in the Cu(II)-imidazole system, the precipitation starts at $pH = 7$ ($a = 2$). Moreover, the experimental MLA curve is well displaced from the theoretical composite curve and the colour of the solution is intense blue, much more than in ML system, whereas in the simple MA system the colour of the solution is bluish green. These observations indicate the formation of the mixed complex in the region $a = 2 - 3$.

The pH titration curves of the mixed ligand systems with other transition metal ions, such as Co(II), Ni(II) and Zn(II) also reveal that in all these cases as well, the mixed complexes are formed in the region $a = 2 - 3$.

Similarly pH titrations were also carried out at the metal-ligand ratios of 1:1:2 (MLA$_2$ systems) to see the formation of a MLA$_2$ chelate at higher concentr-
Table 1—Stability constants of mixed ligand complexes
(M-IMDA-Im systems)

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>Region</th>
<th>(\log K_{MLA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(II)</td>
<td>((a = 2 - 3))</td>
<td>3.38 ± 0.04</td>
</tr>
<tr>
<td>Ni(II)</td>
<td>((a = 2 - 3))</td>
<td>2.78 ± 0.05</td>
</tr>
<tr>
<td>Co(II)</td>
<td>((a = 2 - 3))</td>
<td>2.51 ± 0.03</td>
</tr>
<tr>
<td>Zn(II)</td>
<td>((a = 2 - 3))</td>
<td>2.86 ± 0.05</td>
</tr>
</tbody>
</table>

Ni(II) complex is slightly less stable than the corresponding Zn(II) complex, whereas in general Ni(II) forms stronger complexes with amines than with Zn(II). But such reversal in the stability of Ni(II) and Zn(II) complexes has also been observed earlier. Sigel has remarked that the mixed-ligand complexes containing Ni\(^{2+}\) are less favoured, in general as long as an aromatic amine such as a pyridyl or imidazole group is involved. Moreover, the mixed IMDA-Im complexes of Cu(II) and Ni(II) are less stable than the corresponding mixed NTA-Im complexes, but in the case of Co(II) and Zn(II), the mixed IMDA-Im complexes are somewhat more stable.

Further, a comparison of the stability constants of the mixed ternary complexes \((K_{MLA})\) with those of the corresponding binary imidazole complexes \((K_{ML})\) shows the following trends: In Co(II) and Zn(II) complexes \(K_{MLA} > K_1\) (Im), but with Cu(II) and Ni(II) \(K_{MLA} < K_1\) (Im), whereas \(K_{MLA} > K_4\) (Im) in all the cases. Similarly with Ni(II), \(K_2\) (for MLA\(_2\) system) \(> K_5\) (Im)\(^{(11)}\) (Table 2).

References