Molecular cloning and characterization of cDNAs encoding cytosolic malate dehydrogenase and vacuolar (H\(^+\))-ATPase in *Annona cherimola* and their expression during postharvest ripening

Manuela Gouveia\(^1\)*, Mónica Rodrigues\(^1,3\), Lucília Teixeira\(^1\) and Nereida Cordeiro\(^2\)

\(^1\) Competence Centre of Life Sciences, University of Madeira, 9000390 Funchal, Portugal
\(^2\) Competence Centre for Exact Sciences and Engineering, University of Madeira, 9000390 Funchal, Portugal

Received 7 May 2015; revised 15 March 2016; accepted 20 March 2016

This study aims to investigate the expression of two cherimoya genes putatively related to fruit ripening. Two full-length cDNAs encoding cytosolic NAD-dependent malate dehydrogenase (*AccytMDH*) and vacuolar (H\(^+\))-ATPase c subunit (*AcVHA-c*) were isolated from *Annona cherimola* using the reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The *AccytMDH* codes for a 332 amino acid polypeptide with a predicted molecular mass of 35.6 kDa. The deduced amino acid sequence for *AccytMDH* shared high identity with other plant homologous malate dehydrogenase proteins. The *AcVHA-c* encodes a proteolipid subunit of the V-type proton ATPase with 166 amino acids (16.7 kDa). Comparison of the deduced amino acid sequence from *AcVHA-c* revealed four transmembrane domains highly conserved among plant counterparts. The expression of *AccytMDH* and *AcVHA-c*, assessed by semi-quantitative RT-PCR showed that there is an increase in the accumulation of transcripts during postharvest ripening, although not correlated by a significant upsurge of titratable acidity they might contribute to organic acid accumulation and translocation during postharvest ripening of cherimoya in association with other enzymes and carriers. By using *AccytMDH* and *AcVHA-c* as molecular targets new strategies can be exploited to get a clear picture in the ripening of cherimoya.

Keywords: Cherimoya, *Annona cherimola*, fruit ripening, gene expression, malate dehydrogenase, vacuolar ATPase

Introduction

During ripening of fleshy fruit chemical modifications, either by enzymatic or non-enzymatic processes, leads to remarkable changes in color, aroma, flavor and decrease in pulp firmness\(^5\). Cherimoya (*Annona cherimola* Mill.) is a soft subtropical fruit which is preferably consumed fresh. It is often considered one of the best tasting fruit in the world due to the pleasing blend of sugars, mainly glucose\(^2\), organic acids and secondary metabolites stored within the vacuole\(^3\). The major drawback of this climacteric fruit is the rapid ripening process (within 5 d at 20\(^\circ\)C), that quickly soften the fruit and reduce postharvest life. Therefore, research programs have been developed to shed light on the ripening mechanisms in order to find molecular targets to improve cherimoya quality and storing\(^4,6\).

Malic acid, an important element of fruit organoleptic traits, is the predominant organic acid in several fruit such as peach\(^7\), apple\(^8\) and loquat\(^9\), though it declines during maturation, unlike to what was observed for cherimoya\(^10\). The accumulation of malic acid during fruit ripening is controlled by several factors in intertwined metabolic processes\(^11\) being attributed to cytosolic malate dehydrogenase (MDH) the responsibility for much of the malate synthesized. Some MDH isoforms have been identified in plants based upon coenzyme specificity, subcellular localization and physiological function\(^12\). Sweetman *et al*\(^13\) suggested that differential regulation of individual MDH isoforms could be involved in malate synthesis and degradation depending on the isoform present, cellular conditions and the availability of substrates. The accumulation of malic acid during cherimoya ripening is driven mainly by the activity of MDH\(^14\). This enzyme facilitates the reversible conversion of oxaloacetate and malate using either NAD or NADP as a cofactor to maintain the equilibrium between these two organic acids\(^13\) and by extension regulates the cytoplasmic pH\(^15\).

The mechanism by which organic acids and soluble sugars are translocated to pulp cells vacuoles is not fully understood but as proton pumps mediate the
acidification of intracellular compartments they seem to play an important role during fruit enlargement and accumulation of sugars and organic acids7,16,17. Vacuolar (H+)-ATPases (V-ATPase) and vacuolar (H+)-inorganic pyrophosphatase are proton pumps that produce the proton motive force essential to generate an electrochemical gradient across the vacuolar membrane which is required as a driving force for antiporters of sugar and secondary metabolites transporters18. The V-ATPase, found in all eukaryotic cells, is a membrane-bound multi-subunit enzyme complex. It is highly conserved among species and comprises two large domains: the peripheral (V\textsubscript{1}), a hydrophilic catalytic complex responsible for ATP hydrolysis and the integral (V\textsubscript{0}), a hydrophobic transmembrane H+ channel. The complex contains 13 different subunits, eight (A – H) from the V\textsubscript{1} domain and five (a, c, c\texttextsuperscript{'} , c'' , d) from the V\textsubscript{0} domain19,20 that form a ring-like structure in the lipid bilayer and operates by a rotary mechanism coupling proton transport across membranes to ATP hydrolysis. The number of subunits in the ring remains uncertain. For several fruit such as pear, grape berry and tomato V-ATPase is the main proton pump at the mature stage and during ripening as gene expression and activity increases with fruit maturation16,21-23. All subunits are vital to assemble the V-ATPase and suppression of any subunit might reveal important insights into its role17,20.

Only recently full-length coding sequences from \textit{A. cherimola} related to browning4, cell wall enzymes5 and chilling response6 have been characterized. However, none of the cDNAs reported in this article nor the changes in gene expression during postharvest ripening of cherimoya have been investigated so far. As molecular tools might be useful to pursue the molecular and biochemical mechanisms to get a better insight into sugar and organic acid accumulation during cherimoya ripening, we isolated and characterized full-length cDNAs encoding cytosolic NAD-dependent malate dehydrogenase (\textit{AccytMDH}) and vacuolar (H+)-ATPase c subunit (\textit{AcVHA-c}) from cherimoya fruit and investigated their expression patterns during postharvest ripening.

Materials and Methods

Plant Material

Cherimoyas (\textit{A. cherimola} Mill. cv. ‘Madeira’) were harvested (early January) at mature green stage from trees in a commercial orchard in Faial (Madeira Island, Portugal). Fruit were treated as described before2 and stored at room temperature (20 – 22\textdegree C) in a dimly lit place. Every day after harvest, 3 to 4 fruit were randomly chosen, peeled, sliced, quick-frozen in liquid nitrogen and stored at – 80\textdegree C until required.

Total RNA Extraction and cDNA Synthesis

Total RNA was extracted from 300 mg of fresh frozen material using a mixture of 600 µL of extraction buffer (0.2 M sodium acetate pH 5.0, 10 mM EDTA, 1% SDS) and 600 µL of phenol pre-warmed at 65\textdegree C. The same volume of chloroform : isoamyl alcohol (24 : 1) was added before vortexing. After centrifugation the aqueous phase was extracted with 1 volume of chloroform : isoamyl alcohol. Total RNA was precipitated in 8 M LiCl at – 20\textdegree C for 2 h, followed by centrifugation at 12000 g for 10 min at 4\textdegree C. The RNA pellet was successively washed once with 2 M LiCl, and twice with 80% ethanol. The RNA was dried at room temperature and resuspended in sterile ultrapure water. Before cDNA synthesis the RNA was treated with DNase using the RNase MinElute Cleanup kit (Qiagen) according to the manufacturer’s instructions. The cDNA synthesis was performed in 20 µL with 5 µg of total RNA, oligo (dT)\textsubscript{12-18} (Invitrogen) and AMV-RT (Invitrogen), according to supplier’s protocol.

Cloning Partial cDNA Fragments of MDH and V-ATPase

Partial cDNAs encoding malate dehydrogenase and vacuolar H+-ATPase were obtained by RT-PCR. Degenerate primers were designed from highly conserved amino acid sequences from homologous in plant species. For malate dehydrogenase nucleotide primers (sense: 5-ATGGAGYTGGTKGATGCTGC-3' and antisense: 5-GGTTVACATCAGGRTAGTG-3') were designed from the amino acid sequences MELVDAA and QYPDVNH, respectively. As molecular tools might be useful to pursue the molecular and biochemical mechanisms to get a better insight into sugar and organic acid accumulation during cherimoya ripening, we isolated and characterized full-length cDNAs encoding cytosolic NAD-dependent malate dehydrogenase (\textit{AcctMDH}) and vacuolar (H+)-ATPase c subunit (\textit{AcVHA-c}) from cherimoya fruit and investigated their expression patterns during postharvest ripening.
cycles each of 94°C, 30 s; 45°C MDH, 48°C V-ATPase, 30 s; 72°C, 30 s; and a final extension of 72°C, 5 min. All PCR reactions were carried out in a Perkin Elmer 2400 thermocycler.

The PCR products with the expected sizes were purified by using high pure PCR product purification kit (Boehringer) or QIAquick gel extraction kit (Qiagen). The ligation mixture was used to transform E. coli DH5α competent cells. Transformants were selected in LB-agar plates containing ampicillin, IPTG and X-Gal for white/blue screening. Recombinant plasmids were extracted by using QIAprep spin miniprep kit (Qiagen) and the insert confirmed by DNA sequencing.

RACE Procedures and DNA Sequencing

The 5'- or 3'-rapid amplification of cDNA ends (RACE) was performed according to the supplier’s protocol (5'/3' RACE kit, 2nd Generation, Roche). Gene specific primers were designed based on the nucleotide sequence of the cDNA fragments obtained previously by RT-PCR using the primer AcMDH5R-SP3 CCTTGGGAACCCACCAACCA and AcMDH-3R GTTGAGGCATGCACTGGTG, respectively. To obtain the 5'- and 3’- RACE of AcVHA-c primers AcvHATPase 5R-SP3 ACA CACCGGCCAT AACGACTG and AcvHATPase-3R AGGCCTGAGC TCGTGATGAA, respectively, were used. The PCR reactions and the thermal cycling were as described by the manufacturer. PCR products were run on a 1% agarose gel containing ethidium bromide (0.5 µg/mL) in 1X TAE buffer and the corresponding DNA fragments were cloned into pJet 1.2/blunt (Fermentas) according to the manufacturer’s recommendations. Plasmids from positive clones were purified using GeneJet plasmid miniprep kit (Fermentas). In all plasmids, cloned cDNA fragments were sequenced on both directions by a commercially AB 3739XL capillary analyzer (Macrogen Europe, The Netherlands) using specific oligonucleotides to the vector.

Sequence Analysis

The nucleotide sequences of the cloned fragments were compared against databases using BLASTX and BLASTP programs at the National Center for Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov)24,25 to search for homology against nucleotide and amino acid sequences. NCBI ORF Finder was used to detect the open reading frame. The deduced amino acid sequences were aligned with the corresponding sequences of other plants using ClustalW2 (http://www.ebi.ac.uk).26 The physicochemical properties of the deduced protein were determined by the ProtParam program (http://web.expasy.org)27, The Predict Protein (http://www.predictprotein.org)28 and TMpred Server29 were employed to foresee the features of the protein. The sequence data of AccytMDH and AcVHA-c described in this study have been deposited at the NCBI under accession number KJ508880 and KJ508881, respectively.

Semi-Quantitative RT-PCR Analysis

To study the expression of AccytMDH and AcVHA-c during postharvest ripening semi-quantitative RT-PCR was performed in parallel reactions on each RNA sample using the following gene specific primers, optimal cycle numbers and annealing temperature: for AccytMDH 5’- GTTGAGGCCATGCACTGGTG-3’ and 5’- CACTGACTTGCAATTTAGCC-3’, 30 cycles, 58°C; for AcVHA-c 5’- AGGCCCTGAGTCGTGATGAA-3’ and 5’- CCAACAATCAGACCATATAAG-3’, 28 cycles, 55 C and for ubiquitin 5’- ATGCAGATYTTTGTGAA-3’ and 5’- AGGCCCTGAGTCGTGATGAA-3’, 28 cycles, 55°C30. Ubiquitin was used as a reference gene. At each day after harvest, total RNA was extracted as described above and used as template (1.5 µg) to synthesize the first-strand cDNA in 20 µL reaction. The corresponding gene products were amplified by RT-PCR as described above, visualized with the BioCaptMW version 99.03 system (Vilber Lourmat, France) and quantified using the Bio-Profil Bio-Gene V99.01 software (Vilber Lourmat, France). The relative expression level for each target gene was determined by calculating the ratio of the target gene intensity to the ubiquitin intensity signal obtained from the same cDNA sample.

Titratable Acidity Determination

Titratable acidity was performed according to Association of Official Analytical Chemists (AOAC)31. Briefly, the juice obtained from 100 g of fruit was diluted with deionized water and titrated to pH 8.2 with 0.1 N sodium hydroxide. This parameter was determined twice per fruit and the results expressed as citric acid equivalents per 100 g of fresh weight.
Statistical Analysis

Data were expressed as means ± standard deviation (SD). At least three replicates were performed for semi-quantitative RT-PCR. The Kolmogorov-Smirnov (P > 0.05) was carried out to verify the normality of data. The one-way analysis of variance (ANOVA) was used to test for differences in gene expression and titratable acidity. Significant differences were further analyzed by Scheffé or Tukey’s multiple comparisons test (P < 0.05). All statistical analysis was performed using SPSS (Statistical Package for Social Sciences) version 15.0 for Windows.

Results

Isolation and Sequence Analysis of AccytMDH

The partial sequence of malate dehydrogenase from *A. cherimola* was amplified by RT-PCR using degenerate primers designed from highly conserved amino acid sequences from MDH homologous in plant. Following PCR reactions, a specific amplified fragment was cloned and sequenced. The sequence analysis showed a 427 bp fragment with over 84% identity at the DNA level to other malate dehydrogenase as *Prunus persica* (gb: AF367442) and *Solanum tuberosum* (gb: DQ294258). Based on the sequence of the cDNA fragment, a set of specific primers were designed to obtain the 5’- and 3’-regions. The full-length cDNA of AccytMDH gene revealed to contain 1336 nucleotides excluding the poly(A) tail (Fig. 1). This sequence showed an open reading frame of 999 bp starting with an initiation codon ATG at position 85 and ending with a termination codon TAA at position 1083. Therefore, the coding region was found to be flanked by 5’ and 3’ untranslated sequences of 84 and 253 bp, respectively. The canonical polyadenylation signal (AATAAA), was located 173 bp upstream from the poly(A) tail and several polyadenylation signals predominant in *Arabidopsis* were also present in the 3’ untranslated region. The protein encoded by this cDNA comprised 332 amino acids with a predicted molecular mass of 35.6 kDa and a deduced isoelectric point of 5.92. Multiple alignment of the obtained AccytMDH with malate dehydrogenase proteins from other plant sources available from GenBank revealed that it is highly conserved among different species (Fig. 2). The deduced amino acid sequence of AccytMDH shared similarities with those from *Prunus persica* (94%), *Malus domestica* (92%) and *Arabidopsis thaliana* (90%). The highest conserved region of the protein was the N-terminal as among the first 32 amino acids, 30 residues were identical (94%) in the seven species shown in Figure 2. Furthermore, highly conserved motifs for the NAD-binding (TGAAGQI) and for the catalytic activity (IWGNH), located near the putative active site, were also present in the AccytMDH. Further search on protein structure showed that AccytMDH sequence form α-helices and β-sheet structures representing 49% and 22% of the protein, respectively.

![Fig. 1](image_url) — Nucleotide and deduced amino acid sequence of full-length AccytMDH cDNA from *A. cherimola*. Deduced amino acid in a one letter code is under the nucleotide sequence. The asterisk corresponds to stop codon. Putative active site is boxed. Polyadenylation signals are underlined. The arrows show the sequence of specific primers used for semi-quantitative RT-PCR.
Isolation and Sequence Analysis of AcVHA-c

Degenerate oligonucleotides designed from highly conserved amino acid sequences of 1-aminocyclopropane carboxylic acid oxidase homologous in plant, unexpectedly amplified by RT-PCR a cDNA fragment (346 bp) homologous to the vacuolar ATP synthase 16 kDa proteolipid subunit. This cDNA sequence was used as anchor.

Fig. 2 — Alignment of the deduced amino acid sequence of AccytMDH with MDH from *Ricinus communis* (gb: XP_002533463), *Prunus persica* (gb: AAL11502), *Malus domestica* (gb: ABB36659), *Medicago truncatula* (gb: XP_003590025), *Nicotiana tabacum* (gb: CAC12826) and *Arabidopsis thaliana* (gb: AAM65532). Conserved and similar amino acids are shaded in black and grey, respectively. The amino acids that binds to NAD (#) malate (*) or both (;) are indicated. Conserved motifs for NAD-binding (1) and catalytic activity (2) are boxed.
to design specific oligonucleotides and a 784 bp full-length cDNA was obtained from rapid amplification of cDNA ends. The open reading frame (498 bp) was flanked by 36 bp at the 5’ untranslated region (UTR) and 247 bp at the 3’ UTR. This region exhibit at least six polyadenylation signals common in plants (Fig. 3). The AcVHA-c cDNA encodes a polypeptide of 166 amino acids, with an estimated molecular mass of approximately 16.7 kDa, an isoelectric point of 8.64 and an instability index of 33.49, thus it is a stable protein. The AcVHA-c showed only alpha helices (78% of the protein) and revealed four highly conserved transmembrane (TM) domains corresponding to amino acid residues 16-33, 57-76, 99-116 and 134-154 (Fig. 3). These TM (TM1, TM2, TM3 and TM4) are over represented by hydrophobic residues alanine, glycine, leucine and valine, and it was predicted to span the membrane four times (Fig. 4). A BLAST search of GenBank showed that AcVHA-c shared over 97% identity with that of Prunus persica and Citrus unshiu and was highly conserved among plant species, except the N-terminal of the protein (Fig. 5). In addition, TM4 contained the putative N, N’-dicyclohexylcarbodiimide binding site represented by the amino acid glutamate (E) critical for proton transport.

Expression Analysis and Changes in Titratable Acidity during Postharvest Ripening

The relative expression of AccytMDH and AcVHA-c over the course of postharvest ripening was detected by semi-quantitative RT-PCR analysis using ubiquitin as a reference gene. The transcript levels of the target genes, AccytMDH and AcVHA-c, remained almost constant over the first three days after harvest and slightly increased, although not significantly (P > 0.5), as postharvest ripening progresses (Fig. 6). The expression profile did not parallel with titratable acidity as a drop was observed on day 2 followed by a sharp rise (P < 0.5) on the third day after fruit harvest (Fig. 7). At this time point cherimoyas were ripe and eatable. On the following days fruit continued to ripe concomitantly with a steadily increase (P > 0.5) in titratable acidity.

Fig. 3 — Nucleotide and deduced amino acid sequences of full-length AcVHA-c cDNA from A. cherimola. Amino acids in bold correspond to the putative transmembrane domains as predicted by secondary structure and amino acid similarity (Rost et al., 2004). The asterisk indicates the stop codon. Polyadenylation signals are underlined. Sequences of the specific oligonucleotides used for semi-quantitative RT-PCR are indicated by horizontal arrows.

Fig. 4 — Four membrane-spanning domains suggested by hydropathy profile of AcVHA-c. Data were analyzed by TMPred Server. Hydrophobic domains are those above the dashed line.
Discussion

In cherimoya the balance between soluble sugars and mild acidity granted by malic acid are extremely important organoleptic traits that contribute to influence perception of sweetness and fruit quality. It is assumed that organic acids and sugars are transported and accumulated into the vacuoles of mesocarp cells using the electrochemical potential of proton pumps. However, molecular data on fruit acid metabolism is limited in cherimoya. Hence, two full-length cDNAs designated AccytMDH and AcVHA-c associated to malate metabolism and transportation, respectively, were isolated from \textit{A. cherimola} fruit.

Our analysis showed that AccytMDH encodes a cytosolic NAD-dependent MDH and the comparison with other published homologous showed it was highly conserved either at nucleotide or deduced amino acid sequences. Moreover, highly conserved motifs for the NAD-binding or catalytic activity usually present in all cytosolic MDH were also present in the AccytMDH. The secondary structure analysis revealed that AccytMDH was mainly constituted with α and β helices, which were intertwined with turn and random coil, essential for substrate and coenzyme binding and stabilization, and therefore for MDH activity.

Sequence analysis indicated that AcVHA-c codes for a 16 kDa proteolipid subunit which is the principal integral membrane protein that forms the proton channel of the vacuolar ATP synthase through which protons are translocated across tonoplast. Alignment of the deduced amino acid sequence demonstrated that AcVHA-c was highly similar to their
counterparts’ proteins known in plant species. Actually, it is known that the subunits comprising the (V₀) ring structure are the most highly conserved. Furthermore, AcVHA-c showed four conserved transmembrane domains computationally predicted, which is typical of this subunit. In the TM4 the amino acid glutamate (E¹⁴³) was present and as reported by others, it seems to be vital for proton translocation activity through the V₀ domain as it is the site where N, N’-dicyclohexylcarbodiimide, a H⁺ pore blocker, inhibits the activity of ATPase by reacting with the carboxyl group of the residue.

The genes isolated in this study, AccytMDH and AcVHA-c, allowed the analysis on to what extent they are involved on malate metabolism and transportation during cherimoya ripening. Both genes are expressed throughout postharvest ripening showing an increase on the transcript levels at the later stages of this process, although a strict relationship between gene expression and titratable acidity was not found. Similar results were also obtained for peach, apple and pear, where the expression levels of several genes engaged in organic acid metabolism and transportation were not correlated with changes in organic acid content. Therefore, it is suggested that in cherimoya apart from AccytMDH other key enzymes or regulatory processes affect the increase in titratable acidity. It is noteworthy that malate metabolism is controlled by synthesis, transportation and degradation and that cytosolic NAD-dependent MDH is regarded as part of a shuttle system for the exchange of substrates and reducing equivalents between the cytoplasm and cellular organelles. In addition, malate can be exported to the mitochondria to be used as a respiratory substrate.

The vacuolar (H⁺)-ATPases seem to operate by a rotary mechanism coupling proton transport across tonoplast to ATP hydrolysis, being required to mediate the translocation of sugars and organic acids into the vacuole. In ripe fruit such as pear and grape berries, V-ATPase is the major proton pump that provides the driving force for active transport of metabolites and possesses a strong acidification capacity maintaining low pH values. In cherimoya V-ATPase might play an important role as proton pump to translocate organic acids and sugar to the vacuole. In agreement with this hypothesis the expression of AcVHA-c increased during fruit ripening contributing to the need to maintain the accumulation of these products, which undergoes a continuous accumulation during cherimoya postharvest ripening. Nevertheless, further investigations are needed to establish a clear relationship between gene expression and malate accumulation in cherimoya. By using AccytMDH and AcVHA-c as molecular targets new strategies can be exploited to get a clear picture in the ripening of cherimoyas to further improve fruit quality and storing.

Titratable acidity and organic acids, mainly malic acid, are assumed to contribute to the pleasing taste and aroma of cherimoya. Consequently, the characterization of molecular targets associated to malate metabolism and transportation might be useful to investigate the molecular mechanism of cherimoya ripening. With this study we have provided the cloning and molecular characterization of full length cDNAs from *A. cherimola* that code for cytosolic NAD-dependent malate dehydrogenase (AccytMDH) and vacuolar (H⁺)-ATPase c subunit (AcVHA-c), respectively. The expression of these genes and the titratable acidity increased during postharvest ripening, but a correlation was not found between them. Nevertheless, AccytMDH and AcVHA-c might contribute to organic acid accumulation and translocation during postharvest ripening of cherimoya in association with other enzymes and carriers. This background information could be worthwhile to be exploited in order to get a clear picture in the ripening of cherimoya.

References

7. Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R et al, Isolation and characterization of six peach cDNAs