Facile and smart synthesis of benzyl salicylate via vapor-phase transesterification over monoliths coated with zirconia and its modified versions

S R Pratapa, S Z Mohammed Shamshuddin, N Thimmajaru & M Shyamsundar

Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka 572 104, India.
Research and Development Center, Bharathiar University, Coimbatore 641 046, India.
Channabasaveshwara Institute of Tech, Gubbi, Tumkur, Karnataka 572 216, India.

Email: mohamed.shamshuddin@gmail.com

No. Contents Pg No.
1 Fig. S1 – Images of typical HMs with different (wt %) coatings (a) Side View: - Bare HM, 5Z-A (HM), 10Z-A (HM), 15Z-A (HM), 20Z-A (HM) and 25Z-A (HM), (b) & (c) Top View: - Bare HM, 5Z-A (HM), 10Z-A (HM), 15Z-A (HM), 20Z-A (HM) and 25Z-A (HM), (d) Transversal View: - 15Z-A (HM) and Bare HM, (e) & (f) Top View: - Bare HM, 5Z-A (HM), 10Z-A (HM), 15Z-A (HM), 20Z-A (HM) and 25Z-A (HM).
2 Fig. S2 – FT-IR patterns of: (a) 5Z-A (HM), (b) 10Z-A (HM), (c) 15Z-A (HM), (d) 20Z-A (HM), and, (e) 25Z-A (HM).
3 Fig. S3 – The influence of FTIR patterns of 15Z-A (HM) catalyst on the effect of: (A) Calcination temperature - (a) Uncalcined, (b) 150 °C, (c) 250 °C, (d) 350 °C, (e) 450 °C, and, (f) 550 °C. (B) Calcination period - (a) 1 h, (b) 2 h, (c) 3 h, (d) 4 h, and, (e) 5 h.
4 Fig. S4 – EDAX patterns of: (a) 5Z-A (HM), (b) 10Z-A (HM), (c) 15Z-A (HM), (d) 20Z-A (HM) and (e) 25Z-A (HM).
5 Fig. S5 – Effect of wash-coating process over the conversion/selectivities. (Reaction conditions: molar ratio (BA: MS) = 2:1, pre-heater temperature = 200 °C, catalyst temperature = 60 °C, flow-rate (reactants) = 5mL/h).
6 Fig. S6 – Effect of catalyst bed temperature on transesterification of (MS with BA) over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: molar ratio (BA: MS) = 2:1, flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C).
7 Fig. S7 – Effect of molar ratio on transesterification of (MS with BA) over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C, catalyst temperature = 60 °C).
8 Fig. S8 – Effect of flow-rate on the (%) conversion of MS and (%) selectivity of products over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C, catalyst temperature = 60 °C).
9 Fig. S9 – Plausible reaction mechanism for vapour-phase transesterification (MS and BA).
10 Fig. S10 – Effect of reaction recyclability over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: molar ratio (BA: MS) = 2:1, flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C, catalyst temperature = 60 °C).
Fig. S1 – Images of typical HMs with different (wt %) coatings (a) Side View: - Bare HM, 5Z-A (HM), 10Z-A (HM), 15Z-A (HM), 20Z-A (HM) and 25Z-A (HM), (b) & (c) Top View: - Bare HM, 5Z-A (HM), 10Z-A (HM), 15Z-A (HM), 20Z-A (HM) and 25Z-A (HM), (d) Transversal View: - 15Z-A (HM) and Bare HM, (e) & (f) Top View: - Bare HM, 5Z-A (HM), 10Z-A (HM), 15Z-A (HM), 20Z-A (HM) and 25Z-A (HM).

Fig. S2 – FT-IR patterns of: (a) 5Z-A (HM), (b) 10Z-A (HM), (c) 15Z-A (HM), (d) 20Z-A (HM), and, (e) 25Z-A (HM).
Fig. S3 – The influence of FTIR patterns of 15Z-A (HM) catalyst on the effect of: (A) Calcination temperature - (a) Uncalcined, (b) 150 °C, (c) 250 °C, (d) 350 °C, (e) 450 °C, and, (f) 550 °C. (B) Calcination period - (a) 1 h, (b) 2 h, (c) 3 h, (d) 4 h, and, (e) 5 h.

Fig. S4 – EDAX patterns of: (a) 5Z-A (HM), (b) 10Z-A (HM), (c) 15Z-A (HM), (d) 20Z-A (HM) and (e) 25Z-A (HM).

Fig. S5 – Effect of wash-coating process over the conversion/selectivities. (Reaction conditions: molar ratio (BA: MS) = 2:1, pre-heater temperature = 200 °C, catalyst temperature = 60 °C, flow-rate (reactants) = 5mL/h).
Fig. S6 – Effect of catalyst bed temperature on transesterification of (MS with BA) over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: molar ratio (BA: MS) = 2:1, flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C).
Fig. S7 – Effect of molar ratio on transesterification of (MS with BA) over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C, catalyst temperature = 60 °C).
Fig. S7 – Effect of molar ratio on transesterification of (MS with BA) over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C, catalyst temperature = 60 °C).
Fig. S9 – Plausible reaction mechanism for vapour-phase transesterification (MS and BA).
Fig. S10 – Effect of reaction recyclability over (a) 15Z-A (HM) and (b) 15Z-A (PF) catalysts. (Reaction conditions: molar ratio (BA: MS) = 2:1, flow-rate (reactants) = 5mL/h, pre-heater temperature = 200 °C, catalyst temperature = 60 °C).