Reduction of methane emission from landfill using biocover as a biomitigation system: A review

Digambar Chavan & Sunil Kumar*

Solid and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur-440 020, Maharashtra, India

Received 16 November 2017; revised 15 January 2018

Methane (CH$_4$) emission from landfills ranks as the third major source of anthropogenic emission. It has been observed that atmospheric CH$_4$ concentration is more than doubled in last 150 years. CH$_4$ has 23 times more global warming potential (GWP) than that of carbon dioxide (CO$_2$). Therefore, the growth and field application of cost-effective techniques are essential for decreasing the rate of CH$_4$ emissions from landfills to minimize the associated risk of global warming and human health. Microbial oxidation of CH$_4$ has been universally observed in a variety of biomitigation systems. The present paper attempts to describe the key issues linked with CH$_4$ oxidation process in landfill biocover and the underlying kinetics of CH$_4$ oxidation. Influence of several controlling parameters, such as CH$_4$ and oxygen concentration, properties of the cover material, temperature, moisture, pH on CH$_4$ oxidation in landfill biocover system is also discussed.

Keywords: CH$_4$ emission, CH$_4$ reduction, Global warming, Microbial oxidation

Methane (CH$_4$) and carbon dioxide (CO$_2$) are produced when organic solid waste gets degraded. These gases originated deep in municipal solid waste (MSW) landfill, and it can readily travel to the surface and then migrate into the atmosphere. Even after the closure of the landfill site, the biochemical reaction might continue to produce landfill gas (LFG) emissions and both these gases i.e. CO$_2$ and CH$_4$ are highly responsible for global warming. CH$_4$ is identified as a third significant greenhouse gas (GHG) after water vapour and it has 23 times more global warming potential (GWP) than that of CO$_2$. There are numerous scenarios under which modern LFG extraction systems are insufficient to capture whole CH$_4$ emissions, and loss of CH$_4$ from such landfill sites is also huge. Older MSW landfill sites are not capable of capturing CH$_4$ due to insufficient gas collection system. The cost required for LFG extraction is high and it is not possible to adopt such system at all MSW landfills. According to the expected growth in World global landfill CH$_4$ emissions, it is necessary to adopt and promote cost-effective technologies immediately to mitigate anthropogenic CH$_4$ emissions from the atmosphere.

Conventional LFG extraction systems are reported to collect only 50 to 90% of total CH$_4$ emissions. Various technological inputs have played vital role in reducing the associated environmental impacts from landfills. However, it still requires attention with respect to minimizing CH$_4$ emissions.

Microbial CH$_4$ oxidation is attributed to a group of microorganisms called methanotrophs, which have been found in a variety of ecosystems and climatic conditions. Several researchers concluded that CH$_4$ oxidation process in landfill biocover is an efficient and effective technique for mitigation of CH$_4$ emissions from MSW landfills. The principle of biocover technology is the use of methane-oxidizing bacteria to oxidize CH$_4$ into water, CO$_2$ and biomass. Methanotrophs possess CH$_4$ mono-oxygenase enzyme that allows them to consume CH$_4$ as a source of energy as well as carbon.

Biocovers are suitable either for larger engineered MSW landfill sites or for smaller MSW landfills where CH$_4$ emissions are comparatively low. The present review focused on the use of biocover on landfill for CH$_4$ mitigation and associated influencing parameters for CH$_4$ oxidations, such as pH, temperature, CH$_4$ and oxygen concentration, soil texture, properties of biocover material, moisture, etc.

Biocovers

First attempt to quantify CH$_4$ oxidation in landfill cover was carried out by Whalen et al. Since then,
Kinetics of \(\text{CH}_4 \) oxidation in Biocover

Biocovers are landfill covers designed to optimize \(\text{CH}_4 \) oxidation. It consists of two layers; one, the gas dispersion layer; and the other \(\text{CH}_4 \) oxidation layer where actual oxidation takes place. Gas dispersion layer is also called as the permeable layer made up of gravel, broken glasses or sand. A naturally occurring microbial \(\text{CH}_4 \) oxidation in landfill upper covers stops a fraction of \(\text{CH}_4 \) produced in deposited waste being released to the outer atmosphere. For reduction of \(\text{CH}_4 \) emissions using microbial \(\text{CH}_4 \) oxidation process in landfill biocover, both \(\text{CH}_4 \) and oxygen (\(\text{O}_2 \)) are required to be present. Biocover layer on landfill functions as a \(\text{CH}_4 \) oxidation enhancer to convert \(\text{CH}_4 \) into \(\text{CO}_2 \), water and biomass. Fig. 1 shows the kinetics of \(\text{CH}_4 \) oxidation in the biocover layer.

The microbial \(\text{CH}_4 \) oxidation process is carried out by a group of the methanotrophic bacteria present in the soil biocover. Numbers of evidence proved that the presence of methanotrophic bacteria in landfill biocover is responsible for \(\text{CH}_4 \) oxidation process. Methanotrophs are aerobes having special ability to oxidize \(\text{CH}_4 \) under favorable conditions and to convert into \(\text{CO}_2 \), water (\(\text{H}_2\text{O} \)) and microbial biomass.

\[
\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{microbial biomass}
\]

At different \(\text{CH}_4 \) concentration, methanotrophic bacteria have broad categories with respect to their respond to \(\text{CH}_4 \) concentrations.

Review of experimental work

In last several years, the establishment of a number of biocovers (Biomitigation systems) for reduction of \(\text{CH}_4 \) emissions has been reported at various MSW landfills worldwide. Biomitigation systems imply both pilot and full-scale biocovers for landfill \(\text{CH}_4 \) reduction. Full-scale biocover systems are handling whole landfill \(\text{CH}_4 \) emissions and pilot-scale biocovers are treating only part of \(\text{CH}_4 \) emissions from MSW landfills.

Laboratory studies

Rachor et al. carried out a laboratory experiment in a column on four mineral biocover soil samples and in single sediment soil sample which was having higher organic matter and having very fine particles. All the soil samples were subjected to compaction like compaction of the actual field in the waste dumpsite. Mineral soil columns have shown higher \(\text{CH}_4 \) oxidation rate as compared to sediment sample. It is concluded that surface area, finer particles and organic matter are influencing factors for effective \(\text{CH}_4 \) oxidation process.

He et al. collected the cover soil from MSW landfill site in China and studied the interaction effects of several influencing parameter impacting microbial \(\text{CH}_4 \) oxidation process, such as pH, temperature, moisture content and \(\text{O}_2 \) concentration. This study concluded that the microbial \(\text{CH}_4 \) oxidation process is highly sensitive to the moisture content in the substrate and it gets affected by \(\text{O}_2 \) concentrations. Further, it also has considerable influence on the distribution of Type II methanotrophs.

Gebert et al. conducted a study on the effect of compaction on the portion of pores available for gaseous transportation through the soil biocover. In a laboratory experiment, three soil columns were filled with a 17 cm gas distribution layer which is made up of gravel having soil thickness of about 80 cm, which was compacted at 3 levels (75, 85 and 95 %) of its proctor density value. All the soils samples were adjusted for moisture content close to the field capacity. The study concluded that there is a strong correlation between the diffusion of oxygen through the soil biocover and the existing share of pores. It revealed that the soil biocover material at 75% proctor density can fully oxidize \(\text{CH}_4 \) influx of about 3.5 g \(\text{CH}_4/\text{m}^2/\text{day} \).

Eun-Hee et al. have studied the depth profiles of \(\text{CH}_4 \) oxidation potentials and methanotrophic community for soil mixture at a lab-scale biocover. Three soil samples were collected for characterization from top, middle and bottom layer. The size of these
layers varies from 0-10, 10-40 and 40-50 cm, respectively. Results obtained shows that CH$_4$ oxidation rate was observed more at the top most layer of biocover due to more O$_2$ consumption. The rate of CH$_4$ oxidation for middle and bottom layer was 85 and 71%, respectively as compared to the top layer. It was also observed that methanotrophs are equally present in the middle and bottom layer than those present in the top layer. Microbial analysis has shown that the methanotrophs of type I & II are equally present in the top layer and type II methanotrophs are more abundant in a middle and bottom layer of biocover. This difference in the community structure of methanotrophs mainly depends on CH$_4$ and O$_2$ concentrations. It has been suggested the deeper layer of biocover serves as a sustainable reservoir for CH$_4$ reduction25.

Zhang et al.26 have studied the effect of NH$_4^+$ on microbial CH$_4$ oxidation in landfill cover soil. Effect of ammonium addition on methanotrophic activity in soil biocover has been studied using series of NH$_4^+$ concentrations (100, 300, 600 and 1200 mg kg$^{-1}$). The results has shown that addition of 100-300 mg kg$^{-1}$ of NH$_4^+$ in soil biocover stimulates the rate of CH$_4$ oxidation. Addition of ammonium up to 600 mg kg$^{-1}$ inhibits the rate of CH$_4$ oxidation. During the last stage, it has been observed that rate of CH$_4$ oxidation decreases due to limitation caused by the presence of nitrogen26.

Changgen et al.27 have carried out a study for the performance of green waste biocovers for enhancing CH$_4$ oxidation. In this study, green waste aged 2 and 24 months, named “fresh” and “aged” green waste, respectively, were placed in biocover test cells and evaluated for their capability to oxidize CH$_4$ under high LFG loading over a 15-month testing period. It was observed that rate of CH$_4$ oxidation is relatively higher during the initial period which was 140 and 200 g/m2/day for aged and fresh green waste, respectively. The rate of CH$_4$ oxidation was decreased during the winter season with significant generation of CH$_4$ in 60-80 cm thick biocovers. It is suggested that green waste may not be a workable biocover material for several climates and landfills due to difficulties in preventing undesired CH$_4$ generation27.

It has been also observed that the biocovers for landfill CH$_4$ reduction can also act as a sink for atmospheric CH$_4$ even when it has not combined with LFG extraction system. Several studies on soil biocover reported negative gas fluxes in biocovers but not in the conventional biocovers10,28 When LFG extraction system is combined with the biocover, it generates a negative pressure that draws air into landfill through the biocover, where atmospheric CH$_4$ could be oxidized. Even when LFG extraction system is not installed, some portion of air can be drawn into a highly active landfill biocover. This phenomenon occurs when more moles of CH$_4$ and O$_2$ are consumed in CH$_4$ oxidation process than their production.

Field-scale studies

Chanton et al.29,30 studied flat and sloped landfill sites. Effect of CH$_4$ concentration on the rate of CH$_4$ oxidation was investigated for both, the flat and sloped landfills. Inventory for CH$_4$ emissions from the flat and sloped landfill sites was also carried out. Another study was carried out in the summer season when the rate of CH$_4$ oxidation is very high. It has been concluded that CH$_4$ concentration should be controlled for higher CH$_4$ oxidation in landfill biocovers29,30.

Chiemchaisri et al.31 carried out a study for the utilization of stabilized wastes for reducing CH$_4$ emission from the municipal solid waste disposal site. In this study, a stabilized solid waste was used as a biocover layer for CH$_4$ oxidation on MSW landfill. Stabilized solid waste containing plastic wastes has loosened its texture and facilitated the supply of oxygen from the soil surface whereas the fine organic fraction of stabilized solid waste had excellent water holding capacity and nutrients to increase the rate of CH$_4$ oxidation. Results obtained have shown that the microbial CH$_4$ oxidation potential of the stabilized solid waste layer was up to 34.1 g/m2.d. Test carried out for microbial activity discovered that the rate of methanotrophic activities of the plastic and organic fraction of wastes was observed at a similar level. The mixture of plastic and fine degraded organic waste matrix proved to be sufficient for oxygen transfer and it has support for the growth of methanotrophs throughout 0.8 m depth of stabilized solid waste cover layer31.

Scheutz et al.32 conducted a study for mitigation of CH$_4$ emission from an old unlined landfill in Klinholm, Denmark using a passive biocover system. In this study, gas collection trenches are constructed along the slope of the landfill site. Local compost material was used as a biocover material for CH$_4$ oxidation. Use of trenches for gas collection along
with biocover system was proved successful with an average CH$_4$ reduction efficiency of approximately 80%. In this case, use of compost material plays significant role for CH$_4$ oxidation. It was observed that biocover system has great efficiency for CH$_4$ reduction even in the period of cold winter due to the self-heating capacity of compost material. Cost-benefit analysis of this biocover system along with gas collection trenches proved to be competitive as compared to other GHG mitigation system32.

Bomin et $al.$33 carried out a study for mitigation using a pilot-scale engineered biocover at a Landfill in South Korea. A study was carried out in a pilot-scale biocover of size (10x5x1 m in length/width/depth) which was constructed at a landfill, Gwangyang in South Korea. Results obtained have shown that rate of CH$_4$ reduction through microbial oxidation in soil biocover were ranging from 21-72% during the period of February to May. In this study, packaging material used for biocover layer were analyzed for CH$_4$ degradation rate at a different depth of intervals 0-15, 15-30, and 30-50 cm, respectively. It was observed that rate of CH$_4$ oxidation was optimum in the 15-30 cm depth33.

Scheutzet al.34 conducted a study for mitigation of CH$_4$ emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark. The semi-passive biocover system was constructed at the AV Miljo Landfill of Denmark. The semi-passive biocover system was used for CH$_4$ oxidation from landfills. An innovative gas distribution system was used to overcome the often observed uneven gas distribution to the active CH$_4$ oxidation layer resulting in overloaded areas causing CH$_4$ emission hot spot areas on the biocover surface. It was observed that efficiency of CH$_4$ varied between 81 and 100% and the pilot plant biocover system was very efficient in oxidizing the landfill CH$_4$.34 Some of the laboratory and field-scale studies established in the area of biocover for CH$_4$ reduction are presented in Table 1$^{35-43}$.

Factors affecting CH$_4$ oxidation process

Influence of several controlling parameters in the process of microbial CH$_4$ oxidation, such as pH, moisture content, temperature, the texture of the soil, organic content, CH$_4$ and oxygen concentration, properties of the cover material are discussed in this section.

Soil texture

Soil texture affects the rate of CH$_4$ oxidation in soil biocover. Studies carried out by Gebert et $al.$23,24 suggested that use of coarse-textured soils has better efficiency of CH$_4$ oxidation in soil biocover. Soil texture of biocover influences the rate of CH$_4$ oxidation. Soil texture determines the porosity of biocover layer that influences CH$_4$ diffusion from gravel layer to CH$_4$ oxidation layer. Analysis of CH$_4$ oxidation rate at different soil textures has been carried out by Pawłowska & Stepniewski34 concluded that the size of coarse sand had an influence on CH$_4$ oxidation rate. It was observed that coarse sand of 0.5-1 mm size has greater potential to oxidize CH$_4$ as compared to other soil profiles.

Organic content

CH$_4$ oxidation rate increases with the increase in the organic content of biocover45. Christophersen et $al.$46 has concluded that the biocovers with higher organic matter more effectively oxidize CH$_4$ from MSW landfills. Materials with higher organic contents, such as manure or compost, are widely used at MSW landfills as a biocover layer to enhance the rate of CH$_4$ oxidation$^{18,45-47}$. Soil with higher organic content, high nutrient levels and porosity has been proven to have a greater CH$_4$ oxidation potential5. A study carried out by De Vischer et $al.$14 observed that addition of compost materials on landfill results into an increased rate of CH$_4$ oxidation.

Moisture content

The rate of CH$_4$ oxidation gets altered by moisture content in soil biocover. It was observed that excessive moisture soil cover negatively affects the process of microbial CH$_4$ oxidation. Also on the other hand, it is reported that the inadequate level of moisture content reduces CH$_4$ oxidation capacity.4 A higher level of moisture in biocover reduces O$_2$ penetration level, which is the main influencing factor in the process of CH$_4$ oxidation and also low moisture content in biocover reduces the biological activity and results in a reduction of CH$_4$ oxidation capacity48.

Temperature

The temperature has a great effect on the process of microbial CH$_4$ oxidation7. Microbial CH$_4$ oxidation in biocover is a completely biological process and the temperature is a most important factor which influences CH$_4$ oxidation process10. Mor et $al.$49 have studied the relationship between compost material and
temperature for CH₄ oxidation and it was concluded that the effect of temperature on microbial CH₄ oxidation is a time-dependent and optimum range of temperature varies in between 15 and 30°C. A study carried out by De Visscher et al.⁴ has confirmed these results and reported that 35°C is an optimum temperature for microbial CH₄ oxidation process. It is also reported that there is interdependency between temperature and moisture content on CH₄ oxidation rate⁵. Castaldi and Fierro⁶ concluded that rate of CH₄ oxidation was maximum at lower moisture content when the temperature was very high.

pH

It has been observed that the microbial CH₄ oxidation can be seen in a broad range of pH. The optimal range of pH for methanotrophic bacterial growth is found between pH 6 and 8⁵¹. It is stated that the variation in the value of pH affects CH₄ oxidation process in bio-cover of the landfill. Saari et al.⁵² have suggested optimum pH range from 4 to 7.5 for microbial CH₄ oxidation. Hanson and Hanson⁵³ has concluded that soil pH below 5 negatively affects the rate of CH₄ oxidation.

Nutrients

A study carried out by Albanna et al.¹⁷ explained that moisture content and the addition of nutrients had a combined effect on CH₄ oxidation capacity and reported that external addition of nutrients in bio-cover doubles CH₄ oxidation capacity. On the other hand, it is also reported that the adding external

Table 1—Summary of laboratory and field-scale studies of bio-cover for CH₄ reduction

<table>
<thead>
<tr>
<th>Location of study</th>
<th>Type of study</th>
<th>Medium for experiment</th>
<th>Cover material</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanjing, China</td>
<td>Lab-scale</td>
<td>Batch Experiment</td>
<td>Soil & Mineralized refuse</td>
<td>Mineralized refuse, excavated from MSW landfill was incubated in livestock waste water to accumulate CH₄ oxidizing bacteria into it and obtained material was applied on MSW landfill as a bio-cover³⁵.</td>
</tr>
<tr>
<td>Lafleche Landfill Site, Canada</td>
<td>Lab-scale</td>
<td>Column Experiment</td>
<td>Mature & Stabilized compost</td>
<td>Compost material used in this study can be a potential bio-cover application³⁶. Influencing factors: Temperature, Moisture content</td>
</tr>
<tr>
<td>The University of Malaya, Kuala Lumpur, Malaysia</td>
<td>Lab-scale</td>
<td>Batch Experiment</td>
<td>Organic waste (sewage sludge, fine sawdust, spent yeast, black soil, empty fruit brunch, spent tea leaves) & Compost. (75% Grass clippings + 25% Cow manure)</td>
<td>A mixture of organic waste & compost as a bio-cover material will provide major potential for landfill CH₄ reduction³⁷.</td>
</tr>
<tr>
<td>Taman Medan Dumpsite, Malaysia</td>
<td>Lab-scale</td>
<td>PVC soil columns</td>
<td>Soil cover</td>
<td>Soil cover is essential for CH₄ reduction from Landfills³⁸. Influencing factor: Moisture Content</td>
</tr>
<tr>
<td>Fitholt Landfill, Iceland</td>
<td>Field-scale</td>
<td>Stainless steel sampling probes</td>
<td>Crushed wood & Gravel sand</td>
<td>CH₄ Oxidation efficiency ranges 0-99% and reaches its optimum values at the cover depth of 30 and 60 cm³⁹.</td>
</tr>
<tr>
<td>Jeram Sanitary landfill, Malaysia</td>
<td>Lab-scale</td>
<td>Column reactor experiment</td>
<td>Mixture of soil & Ground coconut husk</td>
<td>At the lab-scale, 87.33% average CH₄ reduction was observed⁴⁰.</td>
</tr>
<tr>
<td>MSW Landfill at Bennington, USA</td>
<td>Field-scale</td>
<td>Evapo-transpiration Landfill cover</td>
<td>Soil cover with vegetation</td>
<td>CH₄ oxidation was observed highest during the summer season⁴¹.</td>
</tr>
<tr>
<td>Haryana, India</td>
<td>Lab-scale</td>
<td>Packet Burman Design (PBD) & Box-Behnken Design (BBD)</td>
<td>Rice husk & Soil</td>
<td>This experiment shows that CH₄ oxidation can be improved by rice husk amended soil⁴².</td>
</tr>
<tr>
<td>Northeast Illinois Landfill, USA</td>
<td>Lab-scale in conjunction with Field Scale study</td>
<td>Soil columns</td>
<td>Bio-char and wood pellets</td>
<td>In column test mixed soil-biochar layer achieved better oxidation rate. A highly active methanotrophs responsible for CH₄ oxidation was found abundant in the bio-char layer during the test⁴³. Influencing factors: Moisture, Soil texture</td>
</tr>
</tbody>
</table>
nutrients with low moisture content (approximately 15%) to biocover have negative effects on CH$_4$ oxidation capacity.

Lee et al.34 found that rate of CH$_4$ oxidation of sandy biocover improved by 60 % with the addition of 100 mg-N NH$_4$ per kg of soil. Vegetation on biocover might affect the growth and activities of methanotrophic bacteria in different ways. Bohn and Jager35 observed that the rate of CH$_4$ oxidation could be increased by 50% through vegetation growth on landfill biocover. A vegetation root assists the process of transporting O$_2$ from the atmosphere into deeper soil layers. Also, supportive nutrient materials for the growth of methanotrophic bacteria are released to root zone which increases the microbial CH$_4$ oxidation process55. Vegetation on biocover might compete with the methanotrophs for water and nutrients, which might result in an overall decrease in the rate and capacity of CH$_4$ oxidation2. In engineered biological treatment system at landfill sites, Phosphorous and Nitrogen are added in the form of NH$_4^+$ and orthophosphate. Addition of NH$_4^+$ on landfill biocover reduces CH$_4$ oxidation capacity due to the inhibition of NH$_4^+$ on the growth of methanotrophic bacteria30.

Oxygen concentration

Presence of O$_2$ is a major influencing factor behind CH$_4$ oxidation process in landfill biocovers. All types of methanotrophic bacteria i.e. methane-oxidizing bacteria are aerobic in nature and always prefer O$_2$ concentrations lower than that of atmospheric level for oxidation of CH$_4$.4 The O$_2$ concentration in biocover varies along with the depth of biocover layer and it gets influenced by different parameters, such as metrological conditions, texture of the soil, biocover thickness, moisture content and CH$_4$ oxidation rate. Several studies reported that CH$_4$ oxidation could be observed under an anaerobic condition at the bottom layer of biocover6. Humer and Lechner18 also explained about the porosity of bio-cover material which controls the depth of O$_2$ penetration in soil layer.

CH$_4$ concentration

Several researchers through various laboratory experiments reported that the rate of CH$_4$ oxidation increases with the increase in CH$_4$ concentration. A study carried out by Pawlowska and Stepniewski44 observed an influence of CH$_4$ concentration on CH$_4$ oxidation potential with the Bio-filter assay. It is also observed that increase in CH$_4$ concentration results in the increased capacity of CH$_4$ oxidation by a factor of 1.1 to 1.5.

Design of gas dispersion layer for biocover

The gas dispersion layer of biocover should have properties favorable for CH$_4$ oxidation and for the interaction between CH$_4$, oxygen and microbes. The significant influencing factors required to be considered for the gas dispersion layers include porosity, water-holding capacity, and suitable nutrient concentration10,18,56. Gas dispersion layer of biocover should be porous in nature and it should have a fine surface10,18. The content of organic matter present in the medium should be biologically stable in nature so that process of oxygen consumption due to heterotrophic microorganisms does not distract oxygen away from methanotrophs16,19. Mature compost materials have special characteristics for CH$_4$ oxidation. Organic waste products like compost are also used in gravel layer because of their ecological sustainability and special ability for CH$_4$ oxidation57. Table 22 presents design parameters and characteristics of the support medium required for the biocover design on landfills.

CH$_4$ oxidation in landfills includes biocovers, biowindows, biofilters, and biotarps. Biomitigation applications are depending upon controlling the significant environmental parameters for the activity

<table>
<thead>
<tr>
<th>Type of layer</th>
<th>Importance</th>
<th>Site studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material of support medium</td>
<td>It enables suitable conditions for the growth of methanotrophs, and also for gas flow and O$_2$ diffusion. Influencing factors are porosity, size, nutrients level, moisture content etc10,16.</td>
<td>Yard solid waste compost15 Sludge compost16</td>
</tr>
<tr>
<td>Compaction of oxidation layer</td>
<td>Affects the air-filled pore volume and gas dispersion15</td>
<td>Compaction is not suggested for compost layer15</td>
</tr>
<tr>
<td>Thickness of oxidation layer</td>
<td>Oxidation layer thickness affects CH$_4$ oxidation capacity. The rate of CH$_4$ oxidation gets increases with increase in thickness16</td>
<td>Recommended: 120 cm16</td>
</tr>
<tr>
<td>Gas distribution layer or system</td>
<td>To maintain CH$_4$ concentration in biocover layer2,10.</td>
<td>Landfills with no impervious layer: Gas dispersion2,30</td>
</tr>
</tbody>
</table>
of methanotrophs for CH$_4$ oxidation. Biocovers established at different locations and their CH$_4$ reduction efficiency are presented in Table 3.

Biocovers provide huge surface area and higher volume of gas dispersion layer, which increases the rate of CH$_4$ oxidation. Microbial CH$_4$ oxidation in landfill biocovers could be improved by selection of gravel layer (gas dispersion layer) having favourable conditions for microbial CH$_4$ oxidation. Moreover, along with CH$_4$ few other LFG emissions were reported in Indian MSW landfill context. Mostly in India, waste without any segregation is deposited into open dumping sites. Through these sites, there is uncontrolled emission of CH$_4$ and landfill gas. The LFG has tremendous potential in terms of converting and using them as source of energy. The emission of LFG mainly depends on types of wastes, its biodegradability, its CH$_4$ potential and segregation. In order to quantify the LFG emission, there are a range of US EPA recommended models are available. One of them is LandGem. A specific model designed for measuring rate of CH$_4$ generation form MSW landfill by Kumar et al. specifically for Indian climatic conditions and the landfill’s waste characteristics described CH$_4$, carbon dioxide (CO$_2$), oxygen (O$_2$) and temperature are considered as the prime factors.

Summary and Recommendations

Varieties of organic materials are explored for their use as a biocover layer on MSW landfills. Many laboratory and field-scale experiments have been carried out to establish the bio-cover technology but still some field studies are required to stimulate the concept of microbial CH$_4$ oxidation on MSW landfills. Steps are required to be taken for efficient biocover layers that can reduce CH$_4$ emissions from MSW landfills and encourage the re-use and recycling of waste materials. Microbial CH$_4$ oxidation can be a promising way to mitigate CH$_4$ emission from MSW landfills. Biocover might be an economically feasible option for controlling CH$_4$ emissions from landfill. The microbial CH$_4$ oxidation can be enhanced by appropriate control measures and operations. The rate of CH$_4$ oxidation has been found to be affected by various environmental parameters, such as pH, the texture of the soil, moisture content, temperature organic content, CH$_4$ concentration, oxygen concentration, and properties of the cover material. Special attention should be given to these environmental parameters for validation of biocover technology in a different geographical region, and its application for effective CH$_4$ emission reduction from the landfill. This extensive survey based on scenarios and review should be taken up for experimental and field studies.

References

9. Rachor I, Gebert J, Grongroft A & Pfeiffer E, Assessment of the methane oxidation capacity of compacted soils intended

