Solvent extraction and spectrophotometric determination of lanthanides with N-phenylcinnamohydroxamic acid

Y K Agrawal* & P T Thomaskutty
Department of Chemistry, School of Sciences,
Gujarat University, Ahmedabad 380 009, India
Received 12 March 1992; revised and accepted 13 July 1992

The solvent extraction and spectrophotometric determination of lanthanides with N-phenylcinnamohydroxamic acid (PCHA) is described. Lanthanum(III), praseodymium(III), neodymium(III), samarium(III), gadolinium(III), and terbium(III) form 1:3 yellow coloured binary complexes (λmax 380 nm) with PCHA which are extractable quantitatively into chloroform, at pH 9.0. Sensitivity of the spectrophotometric determination is enhanced by the addition of xylene orange to the organic extract having maximum absorbance between 590 and 610 nm. Efforts have been made to study the extraction equilibria by calculating the extraction constants and the two phase stability constants of the complexes. The possible separation of the lanthanides from each other has been studied by evaluating separation factor(s) and pH1/2 (pH of 50% extraction). The lanthanides are determined in standard United State Geological Samples (USGS) and IAEA Soil-5 samples.

The potential of hydroxamic acids as analytical reagents has already been established1-3. Among hydroxamic acids, N-phenylbenzohydroxamic acid (PBHA) is most extensively used in solvent extraction and the gravimetric determination of various metal ions. It has been shown that an increase in conjugation in PBHA by the introduction of side chain double bonds (− CH = CH −) between the carbon atom of the carbonyl and the phenyl group causes a significant increase in the molar absorptivity of the metal complexes. The increased conjugation also helps to increase the ionization of the ligand at equilibrium and thereby enhances complexation with metal ions and also provides colour to the complexes, enabling direct spectrophotometric determination to be used. Hence, N-phenylcinnamohydroxamic acid (PCHA) is considered to be a highly selective and sensitive reagent compared to PBHA.

The present paper describes the solvent extraction nature and spectrophotometric determination of the lanthanides viz, lanthanum(III), praseodymium(III), neodymium(III), samarium(III), gadolinium(III) and terbium(III) with N-phenylcinnamohydroxamic acid (PCHA).

Experimental
All the chemicals used were of AnalR and GR grades of BDH or E. Merck, respectively unless otherwise specified. N-phenylcinnamohydroxamic acid (PCHA) was synthesised as described elsewhere4 and its purity was checked by m.p., elemental analysis, TLC, IR and UV spectra. A 0.1% (w/v) solution of the reagent in chloroform (0.1% w/v) was used for all the extractions. Stock solutions of rare earths perchlorates (~ 0.01 M) were prepared by dissolving 0.3258, 1.021, 0.3365, 0.3487, 0.3625 and 0.7477 gr of spec pure oxides of La, Pr, Nd, Sm, Gd and Tb, respectively in minimum quantity of 0.1 N perchloric acid and the metal content was determined by EDTA. Solutions of xylene orange (0.05% w/v) were prepared in methanol. Triethanolamine buffer, pH range 7-10, was prepared from 0.5 M triethanolamine solution and HCl or HNO3 (ref. 6).

Spectrophotometric measurements were carried out with Shimadzu UV-VIS 240 recording spectrophotometer. A Systronic (Ahmedabad, India), pH meter model 335, equipped with glass and calomel electrodes, was used for pH measurements.

Extraction of binary complexes
An aliquot of lanthanum (3.85 × 10−5 M), praseodymium (3.1 × 10−5 M), neodymium (2.62 × 10−5 M), samarium (2.46 × 10−5 M), gadolinium (2.78 × 10−5 M) or terbium (2.76 × 10−5 M) was transferred into a 60 ml separatory funnel and the pH was adjusted with triethanolamine buffer solution (5 ml). The aqueous phase was equilibrated for 10-15 min with 10 ml of 0.1% solution of N-phenylcinnamohydroxamic acid in chloroform (10 ml, 0.1%) by shaking in a wrist-action shaker at a constant speed. The organic phase was separated, dried over anhydrous sodium sulphate and transferred to a 25 ml volumetric flask. The extraction was repeated with 3 ml of the reagent solution to ensure the complete recovery of the rare earth. The volume was made up to the mark with chloroform and the absorbance was measured at 380 nm against a reagent blank.

Back extraction
The organic phase was back extracted with 5 ml
of 0.5 M HCl and the rare earth content was determined spectrophotometrically using arsenazo I.

**Determination of the ternary complexes**

The organic extract, separated and dried after equilibration with the aqueous phase, as described above, was transferred to a 25 ml volumetric flask and 2.0-2.5 ml of 0.05% xylene orange in methanol was added followed by 7.5 to 8 ml of methanol, so as to keep the chloroform to methanol ratio 3:2. The volume was made up to the mark with chloroform and the absorbance was measured in the range of 590-610 nm against respective reagent blanks.

The reaction between the lanthanides (La) and N-phenyl-3aminohydroxamic acid (HA) can be represented as:

\[
K \quad \text{Ln}^{3+} + 3\text{HA} \rightleftharpoons \text{LnA}_3 + 3\text{H}^+
\]

from which

\[
\log K = \log D - 3\text{pH} - 3\log[\text{HA}]
\]

On the addition of xylene orange (XO) to the organic extract, greenish violet (Ln - HA - XO) ternary complexes are formed by the replacement of one mole of HA with one mole of xylene orange, as shown by the stoichiometric studies. The formation of these ternary complexes can be represented as:

\[
K' \quad \text{Ln}^{3+} + 2\text{HA} + \text{XO} \rightleftharpoons \text{LnA}_2\text{XO} + 3\text{H}^+
\]

from which

\[
\log K' = \log D - 3\text{pH} - 2\log[\text{HA}] + \log[\text{XO}]
\]

can be derived.

The distribution constant, \(P\), of PCHA was determined by shaking mechanically for 10 min. a series of solutions of the reagent (10 ml, 0.1% in chloroform) with the same volume of aqueous solution of pH 9.0, adjusted with triethanolamine buffer. After phase separation the absorbance of the organic phase was measured at 292 nm against the solvent. The distribution constant, \(P\) was calculated from the distribution ratio (D'), using the equation,

\[
P = D'(1 + \frac{K_s}{[H^+]})
\]

where \(K_s\) is the acid dissociation constant of the reagent. The \(\log K, \log(\beta_I \cdot P')\) and \(\log K'\) values calculated are given in Table 1. The acid dissociation constant \(pK_s\) of PCHA is obtained as 8.46.

**Results and discussion**

Table 2 summarises the Beer's law range and the molar absorptivity of the binary and ternary complexes. Variation in percentage extraction (% E) for the extraction of La(III), Nd(III), Sm(III), Gd(III) and Tb(III) ions was investigated as a function of \(\text{pH}\) in the range of 6.0-10.5. The \(\text{pH}\) range of quantitative extraction of the individual metal ions are shown in Fig. 1. Since the extraction is quantitative at \(\text{pH}\) 9.0 for all the metal ions studied, the same \(\text{pH}\) has been selected for further studies to optimise all the parameters.

Slope ratio method has been adopted for the stoichiometric studies of the binary and ternary complexes. In the case of Ln - PCHA system, the plots of log D versus log [PCHA] for all the metal as represented as:

<table>
<thead>
<tr>
<th>Metal complex</th>
<th>(10^{-4}\times(\text{Molar absorptivity}))</th>
<th>Beer's Law range ((\mu g/ml))</th>
<th>(10^{-4}\times(\text{Molar absorptivity}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[La(III)]_3</td>
<td>0.60-23.4</td>
<td>1.18</td>
<td>0.10-3.9</td>
</tr>
<tr>
<td>[Pr(III)]_3</td>
<td>0.55-21.9</td>
<td>1.30</td>
<td>0.09-3.8</td>
</tr>
<tr>
<td>[Nd(III)]_3</td>
<td>0.52-20.6</td>
<td>1.40</td>
<td>0.08-3.3</td>
</tr>
<tr>
<td>[Sm(III)]_3</td>
<td>0.50-19.3</td>
<td>1.55</td>
<td>0.08-3.3</td>
</tr>
<tr>
<td>[Gd(III)]_3</td>
<td>0.55-21.8</td>
<td>1.44</td>
<td>0.11 \times 4.3</td>
</tr>
<tr>
<td>[Tb(III)]_3</td>
<td>0.52-20.6</td>
<td>1.54</td>
<td>0.11 \times 4.5</td>
</tr>
</tbody>
</table>

Values of column IV and V are for "corresponding MLxO· complexes; Chloroform:methanol::3:2; \(\lambda_{max} = 590-610\) nm.
ions at pH 9.0, show slopes of 3 (Fig. 2) which suggests that the stoichiometry of the binary species is 1:3 (metal:ligand).

Similarly in the case of 1N – PCHA – XO system, the plots of log D versus log [xylenol orange] for all the metal ions, at pH 9.0 have slope values close to 1 (Fig. 2), indicating the formation of 1:2:1 (metal: PCHA:xylenol orange) ternary complexes, possible by the replacement of one mole of PCHA by one mole of xylenol orange.

Mutual separation of the lanthanides by the proposed method has been studied by evaluating separation factor (s) and pH of 50% extraction of the individual metal ions. The separation factor has been calculated from the distribution ratio of the binary species obtained by the back extraction procedure at pH 9.0. Table 1 also summarizes the values of s and pH\textsubscript{1/2} which enable to formulate the possible separation of the adjacent lanthanides by the present method.

Selectivity of the reagent for lanthanides has been studied by the proposed method extracting the lanthanides in the presence of different ions. The results show that most of the ions studied are not in
Table 3—Determination of rare earths in standard samples
(Samples were from the United States Geological Survey and IAEA Soil-5)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lanthanum</th>
<th>Paraseodymium&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Neodymium</th>
<th>Samarium</th>
<th>Gadolinium&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Terbium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cer. value</td>
<td>found</td>
<td>cer. value</td>
<td>found</td>
<td>cer. value</td>
<td>found</td>
</tr>
<tr>
<td>BCR-1(52/19)</td>
<td>26.0</td>
<td>25.8</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACV-1(74/19)</td>
<td>35.0</td>
<td>35.2</td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSP-1(17/22)</td>
<td>190.0</td>
<td>189.8</td>
<td>160.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2 (108/15)</td>
<td>96.0</td>
<td>96.1</td>
<td>70.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-1</td>
<td>9.8</td>
<td>9.8</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil-5</td>
<td>28.1</td>
<td>27.9</td>
<td>26.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>found</td>
<td>cer. value</td>
<td>found</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.0</td>
<td>29.2</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.0</td>
<td>38.9</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>188.0</td>
<td>188.1</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.0</td>
<td>59.7</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>15.2</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.0</td>
<td>29.8</td>
<td>5.42</td>
</tr>
</tbody>
</table>

Values are average of eight determinators. 'a' the certified values for Pr and Gd have not been reported. cer = certified value

Acknowledgement
One of the authors (PTT) is thankful to the UGC, New Delhi for providing financial assistance.

References