A well-known face on television, Science Editor, New Delhi Television, Pallava Bagla has been awarded the prestigious Indira Gandhi Prize for Popularisation of Science for the year 2017. The prize is given by the Indian National Science Academy (INSA), New Delhi – an apex body of Indian scientists.

This coveted award comes to him in the birth centenary year of former Prime Minister Mrs Indira Gandhi famous in scientific circles for having mandated the 1974 nuclear explosion at Pokhran.

More than a thousand fellows of INSA collectively choose once every three years the best populariser of science in the country. Bagla is also concurrently the Correspondent of the journal Science, a columnist for the Press Trust of India (PTI) and a photographer for Getty Images. Bagla has won three National Awards for his writings on science and technology.

The Indira Gandhi Prize for Popularisation of Science was established by the Indian National Science Academy in 1986 to encourage and recognise public awareness of science and was named after the late Prime Minister, Indira Gandhi. Beginning 2008, the Prize is being awarded once in every three years for outstanding work done on popularisation of science in any Indian language, including English.

The citation reads: “Shri Bagla is a highly committed voice for communicating Indian science and technology to the lay people and is a leading science journalist and has showcased Indian science and technology globally. Simplifying complex science for the lay people is his forte.”

In 2010, Pallava Bagla was awarded the ‘David Perlman Award for Excellence in Science Journalism’ given by the American Geophysical Union (AGU), Washington DC, for his landmark writings which exposed the Himalayan glacier blunder by the UN’s Intergovernmental Panel on Climate Change (IPCC).

His work on India’s first mission to the moon, Chandrayaan-1 in 2008 and to Mars-Mangalyaan in 2013 has been greatly applauded.

He is also author of several books including Reaching for the Stars: India’s Journey to Mars and Beyond. His latest book is titled Bridging the Communication Gap in Science and Technology: Lessons from India published by Springer.

INdian kids have reasonable knowledge about lifestyle diseases and their risk factors, but this knowledge does not translate into preventive action, a new study has revealed.

For instance, adolescent children know that unhealthy food is a risk factor for cardiovascular diseases (CVDs) yet they indulge in eating junk food and unhealthy snacks.

In spite of better awareness, there is a huge knowledge-practice gap among teenagers, the study done among school children in Kolkata has found. Most of these teenagers (who are aware) showed poor and unhealthy eating lifestyles like more than three major meals a day, frequent snacking (more than four times in a day) and consumption of street food. The
A team of Indian astronomers has identified a cosmic behemoth—a supercluster of galaxies—about 4 billion light-years away from us. The new discovery has been named Saraswati—which in Sanskrit literally means ‘ever-flowing stream with many pools’.

The supercluster spans over 650 million light years in its expanse, containing over 10,000 galaxies in 42 clusters. Its total mass equals 20 million billion suns. The team of astronomers was led by Joydeep Bagchi of Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune, which used data from the Sloan Digital Sky Survey.

The discovery is forcing astronomers to rethink about early stages of the evolution of the universe and provides vital clues about the mysterious dark matter and dark energy. The results of the study were published in The Astrophysical Journal. “There are hundreds of superclusters in the size range of less than 100 million light years. The Saraswati supercluster clearly stands out in the sky as an especially rare, and possibly among the mega superclusters exceeding 500 million light years in size,” said Somak Raychaudhury, one of the co-authors and the Director of IUCAA, Pune.

“A large-scale structure this massive evolves very slowly, and therefore it may reflect the whole history of galaxy formation and the primordial initial conditions that have seeded it,” said Joydeep Bagchi.

The long-popular “Cold dark matter” model of evolution of the Universe predicts that small structures like galaxies form first, which congregate into larger structures. The existence of large structures such as the “Saraswati Supercluster” that evolved as early as 10 billion years since the Big Bang is a challenge to this model. “The discovery of these extremely large structures thus forces astronomers into re-thinking popular theories of how the Universe got its current form, starting from a more-or-less uniform distribution of energy after the Big Bang,” says Prof Raychaudhury.

“Our work will help to shed light on the perplexing question how such extreme large scale, prominent matter-density enhancements had formed billions of years in the past when the mysterious Dark Energy had just started to dominate structure formation,” said Bagchi.

Contributed by Dr. T.V. Venkateswaran, India Science Wire, Vigyan Prasar