Evaluation of protective effects of ethanolic extract of *Costus speciosus* (Koenig) Sm. rhizomes on carbon tetrachloride induced hepatotoxicity in rats

Nitin Verma* and R L Khosa

Department of Pharmaceutical Technology, Bharat Institute of Technology, Partapur Bypass, NH#58, Meerut-250 005, Uttar Pradesh, India

*Correspondent author, E-mail: nitinmiet14@rediffmail.com, nitinmiet1482@gmail.com

Phone: +91 121 24001877, (0)9897222975 (Mob)

Received 3 March 2008; Accepted 22 September 2008

Abstract

The hepatoprotective activity of the ethanolic extract of the rhizomes of *Costus speciosus* (Koenig) Sm. was studied on carbon tetrachloride treated rats. The extract registered a significant fall in the levels of serum glutamyl oxalacetic acid transaminase (SGOT), serum glutamyl pyruvate transaminase (SGPT), alkaline phosphatase (ALKP), serum bilirubin (SBLN) and liver inflammation supported by histopathological studies on liver, thus exhibited a significant hepatoprotective activity.

Keywords: *Costus speciosus*, Carbon tetrachloride, Ethanolic extract, Hepatoprotective activity, Lipid peroxidation.

IPC code; Int. cl. — A61K 36/00, A61K 36/906, A61K 125/00, A61P 1/16

Introduction

The liver is the prime organ concerned with various states of metabolic and physiologic homeostasis of the organism. In modern medicine there is no specific cure for such fearful diseases as infectious hepatitis and liver cirrhosis. Treatment of many liver diseases is symptomatic and often disappointing since much is still obscure about their etiology. There is, however, a plethora of drugs in the indigenous system of medicine said to be useful in these diseases.

Costus speciosus (Koenig) Sm. (Family—Zingiberaceae) commonly known as *Keukand* or *Kustha* in Hindi is an erect plant up to 2.7 m high. It is used in Ayurvedic system of medicine as an anti-inflammatory, anthelmintic, astringent, bitter, depurative, purgative and as stimulant. The plant is also used as anti-diabetic. It has been reported that its rhizomes contains dioresin, prosapogenin B of dioscin, diosgenone, cycloartanol, 25-en cycloartenol octacosanoic acid, spirostanol glycoside (steroid saponins), and furostanol glycoside 26-O-β-glucosidase. Quinones like 6-methyl dihydrophytylplastoquinone and dihydrophytylplastoquinone are also reported in plant.

In Meghalaya, the decoction of rhizomes and those of *Cyperus rotundus* Linn. and the bark of *Azadirachta indica* A. Juss. is given in jaundice. Considering these facts an experimental investigation was carried out to explore the use of this drug as a hepatoprotective agent. This protection was judged in carbon tetrachloride (CCl₄) induced liver toxicity in albino rats because the changes associated with CCl₄-induced liver damage are similar to that of acute viral hepatitis and it is one of the internationally accepted models for hepatotoxicity in the screening of herbals for their hepatoprotective effects in rats.

Materials and Methods

Plant material

The rhizomes of *C. speciosus* were procured from the Plant Physiology Division, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Krishi Nagar, Jabalpur and
authenticated by Dr. Anjula Pandey of Taxonomic Division, National Herbarium of Cultivated Plants, National Bureau of Plant Genetic and Resources, Pusa Campus, New Delhi. A voucher specimen (NHCP/NBPGR/2007/98/2225 dated 22/08/2007) was retained in our laboratory for further reference.

Plant extract

The plant material was dried under shade, reduced to moderately coarse powder and was extracted successively with petroleum ether (60-80°C) and ethanol using soxhlet apparatus. The ethanolic extract was dried under vacuum (yield 10.78%) and its qualitative analysis showed the presence of phenolic compounds, saponins, reducing sugars and glycosides. The ethanolic extract of *C. speciosus* (CSEE) was used for the present studies.

Animals

Wistar albino rats of both sexes (130-170g) were used for the present studies. They were housed in clean polypropylene cages (38×23×10 cm) with not more than six animals per cage and maintained under standard laboratory condition (temperature 25±2°C) with dark and light cycle (12/12 h). They were provided standard pellet diet (Hindustan Lever, Kolkata, India) and water *ad libitum*. The Institutional Animal Ethics Committee (IAEC) approved the use of animals for the studies (Ethical clearance number: 711/02/a/CPCSEA).

Assessment of hepatoprotective activity

The rats were divided into four groups of six rats each. The animals of group A and B served as control and carbon tetrachloride control received vehicle (0.1% Tween 80 10ml/kg b.w.). Group C served as standard and received Silymarin (100 mg/kg b.w. in 0.1% Tween 80), and group D was given alcoholic extract of *C. speciosus* rhizome (500 mg/kg b.w. in 0.1% Tween 80). All administration of doses was made by gastric intubations once daily for seven days.

On the 8th day one hour after the administration of last dose, the animals of group B, C and D were given an intraperitoneal injection of carbon tetrachloride with an equal quantity of liquid paraffin (0.5 ml/kg b.w.). All the animals were then fasted for 24 h after which they were anaesthetized and the blood was collected by cardiac puncture. The liver was quickly dissected, washed with ice-cold saline and stored in freezer. The blood samples were allowed to coagulate at room temperature for one hour. Serum was separated by centrifugation at 12,000 rpm at 4°C for 5 minutes.

Biochemical studies

Serum was analyzed for various biochemical parameters, i.e. serum glutamyl oxalacetic acid transaminase (SGOT, AST), serum glutamyl pyruvate transaminase (SGPT, ALT)

and alkaline phosphatase (ALKP)

and for serum bilirubin.

Histopathological studies

The hepatoprotective activity was confirmed through histopathological studies on liver of rats. Slices of liver were cut and washed in Ringer’s solution which then soaked with filter paper for 1.5 min then liver slices were fixed in Carnoy’s fluid I (Ethanol: Chloroform: Glacial acetic acid — 6:3:1) and processed for paraffin embedding following the standard microtechniques. Section of liver, stained with aqueous haematoxylin and alcoholic eosin were observed microscopically for histopathological changes.

Statistical analysis

The data represent mean ± S.E.M. Results were analyzed statistically by one-way ANOVA followed by Student’s ‘t’ test. The minimum level of significance was set at *P*<0.001 compared to control.

Results and Discussion

Results indicated that the ethanolic extract of the rhizomes of *C. speciosus* provides significant protection against the toxic effect of CCl 4 on liver. The effects of ethanolic extracts at a dose level (500 mg/kg b.w. in 0.1% Tween 80) showed recovery against the toxic effects of CCl4 on serum marker enzymes and total bilirubin compare to Silymarin treated group as shown in the Table-1. Hepatic injury induced by CCl4 caused significant rise in marker enzymes SGPT, SGOT, ALP and serum bilirubin and caused a subsequent recovery towards normalization almost like that of Silymarin treatment. Histological profile of the ethanolic extract treated animals showed the recovery against the CCl4 induced necrosis in their normal compact arrangement of hepatic cells. Whereas, the section of the animals treated with Silymarin showed moderate accumulation of fatty lobules around the vein but the extent of liver damage was lesser in magnitude as compared to the CCl4 treated animals (Fig.1 a-d). The results of this
investigation indicated that the ethanolic extract of *C. speciosus* possess hepatoprotective activity against CCl₄ induced liver damage in rats. The ability of a hepatoprotective drug to reduce the injurious effects or to preserve the normal hepatic physiological mechanisms that have been disturbed by a hepatotoxin is the index of its protective effects¹³. The hepatotoxicity induced by CCl₄ is due to its metabolite CCl₃⁺, a free radical that alkylates cellular proteins and other macromolecules with a simultaneous attack on polyunsaturated fatty acids, in the presence of oxygen, to produce lipid peroxides, leading to liver damage¹⁴. Hepatocellular necrosis leads to elevation of the serum marker enzymes, which are released from the liver into blood¹⁵. The increased levels of SGOT, SGPT, ALP and serum bilirubin are conventional indicators of liver injury¹⁶.

The present study revealed significant increase in the activities of SGOT, SGPT, ALP and serum bilirubin levels on exposure to CCl₄ indicating considerable hepatocellular injury. Administration of ethanolic extract of the rhizomes of *C. speciosus* at a dose level (500 mg/kg b.w. in 0.1% Tween 80) attenuated the increased levels of the serum enzymes, produced by CCl₄ and caused a subsequent recovery towards normalization almost like that of Silymarin treatment. The hepatoprotective effect of the drug was further concluded by the histopathological examination. The result showed that the drug at a dose level (500 mg/kg b.w.) offers a significant hepatoprotection. This may be due to rich content of the steroidal saponins and glycosides in the rhizomes of *C. speciosus*; as hepatoprotective action of certain steroidal saponins and glycosides has been well documented in the literature.

Conclusion

In conclusion, the remarkable results of this experiment are the decrease in the content of hepatic markers (SGOT, SGPT, ALP and bilirubin). The ethanolic extract of *C. speciosus* rhizomes showed better results in comparison with Silymarin. In addition its ethanolic extract also prevented the increase in liver weight, liver inflammation and necrosis induced by CCl₄. These data along with the histopathological studies clearly shows the hepatoprotective activity and justifies the use of this plant in folk medicine for jaundice. Further studies are in progress to identify active principle(s) responsible for is hepatoprotection and to find out synergy among different compounds present in *C. speciosus*.

Table 1: Effect of ethanolic extract of *Costus speciosus* rhizomes on CCl₄ induced hepatotoxicity in rats

<table>
<thead>
<tr>
<th>Parameters, Groups</th>
<th>SGPT (IU/l)</th>
<th>SGOT (IU/l)</th>
<th>SALP (IU/l)</th>
<th>Bilirubin (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Direct</td>
<td>Liver weight (g)</td>
<td></td>
</tr>
<tr>
<td>Group A: Control</td>
<td>53.25±3.83</td>
<td>382.50±21.32</td>
<td>196.68±1.09</td>
<td>0.93±0.03, 0.17±0.08, 3.21±0.22</td>
</tr>
<tr>
<td>Group B: Toxicant (Induction control)</td>
<td>268.32±23.04***</td>
<td>702.45±6.6***</td>
<td>489.23±5.7***</td>
<td>3.14±0.24***, 1.29±0.25***, 3.38±0.24**</td>
</tr>
<tr>
<td>Group C: Standard (Positive control)</td>
<td>78.67±7.33</td>
<td>408.29±4.68</td>
<td>213.55±4.27</td>
<td>1.64±0.82, 0.19±0.03, 3.22±0.01</td>
</tr>
<tr>
<td>Group D: Ethanolic extract (500mg/kg b.w.)</td>
<td>104±9.75*</td>
<td>438.00±7.0**</td>
<td>249.59±6.07*</td>
<td>1.82±0.38**, 0.24±0.88*, 3.32±0.01***</td>
</tr>
</tbody>
</table>

Note: n= six animals in each group; Values are expressed as mean ± SEM; *p<0.05 compared to control; **p<0.02 compared to control; ***p<0.001 compared to control.
Acknowledgement

The authors are thankful to the Taxonomic Division, National Herbarium of Cultivated Plants, National Bureau of Plant Genetic and Resources, New Delhi for plant’s identification and its authentication.

References