Synthesis and bronchodilatory activity of new 4-aryl-3,5-bis(2-chlorophenyl)-
carbamoyl-2,6-dimethyl-1,4-dihydropyridines & their 1-substituted analogues#

T Suresh, S K Swamy & V M Reddy*

Ch. Ravi Shankar Memorial Med-Chem. Research Laboratory, University College of Pharmaceutical Sciences,
Kakatiya University, Warangal 506 009, India
E-mail: vanga_mreddy@rediffmail.com

Received 24 January 2005; accepted (revised) 18 August 2006

Thirty five different 4-aryl-1-substituted 2,6-dimethyl-3, 5-bis-N-[(substituted) carbamoyl] 1,4-dihydropyridines have
been prepared from a three component condensation reaction of N-(2-chlorophenyl)-acetooacetamide; an aromatic aldehyde
and a primary amine under four different experimental conditions. Except for conventional, all the experimental conditions
are simple, eco-friendly, economical, and the reactions are rapid and high yielding. All the compounds have been purified
and characterized by their spectral and elemental analysis data. The methods employed have been compared in terms of
yields, cost and simplicity. All the compounds have been tested for their acute toxicity, gross behavioural studies and
screened for their bronchodilatory activity by standard methods.

Keywords: N-(2-Chlorophenyl)acetooacetamide, 1,4-dihydropyridine, potassium tert
butoxide, trimethyl silyl iodide, 1-n-butyl-3-
methylimidazolium tetrafluoroborate, bronchodilatory activity.

IPC: Int.Cl.8 C07D

The interest in 1,4–dihydropyridines is ever-growing
due to their varied biological, pharmacological and
medicinal applications. The DHP-frame-work is one
among the most prolific chemo-types found in the
computational analysis of the comprehensive
medicinal chemistry database. The DHPs have
established themselves as one of the most potent Ca+2
channel blockers and have formed a distinct class of
drugs for the treatment of several cardio-vascular
diseases including angina pectoris and hypertension1.
Interestingly, this heterocyclic system has been found
to be the structural feature of several bio-active
compounds known for vasodilatory, bronchodilatory,
smooth muscle contraction inhibitors, antidiabetic,
antitumor, genoprotective and hepato-protective
properties2. Further studies have revealed them also to
exhibit neuroprotectant, platelet antiaggregatory,
cerebral antischemic activities besides acting as a
chemosensitizer in tumor therapy3. Thus 1,4-DHP
derivatives demonstrate a remarkable potential as a
source for novel drugs.

The classical methods involve the Hantzsch and
modified Hantzsch procedure, which are long run
reactions resulting finally in poor yields. But the
interesting applications of DHPs lead to the
development of novel synthetic strategies that have
witnessed a drastic reduction of reaction times and
a phenomenal increase in percentage yield. Microwave
irradiation technique has proved to be
quite useful for the synthesis of DHPs4.

Recent literature reveals a few more simple, eco-
friendly and cost-effective methods such as solvent-
free solid supported microwave technique5, using the
ionic-liquid6 as catalyst and reaction medium, and the
iodotrimethyl silane-mediated methods7. The
microwave method has witnessed a further
improvement with the use of an aqueous hydro trope
solution as a safer reaction medium8. A convenient
Hantzsch synthesis of DHPs also been reported using
tetraethyl orthosilicate9.

A close observation of DHPs’ literature indicated
clearly the extensive work reported on DHP esters,
probably due to the proto-type Nifedipine. And one
comes across only a couple of reports on N-
substituted carbamoyl DHP derivatives10, inspite of
the fact that they too exhibit interesting biological and

#Part of the work has been presented at the National Seminar
organized by the National Academy of Chemistry and Biology,
India, held at Lucknow during December 6-9, 2002, Abstr. No. P-
17.
pharmacological properties. Therefore, in continuation of the studies on N-substituted carbamoyl DHPs11,12 it has been considered interesting to extend the recently developed synthetic techniques to DHP carbamoyl derivatives for their synthesis, in analogy and to evaluate them for possible biological and pharmacological properties. As a step in this direction, the synthesis of 4-aryl-1-substituted 3,5-bis-[N-(2-chlorophenyl)carbamoyl]-1,4-dihydropyridines has been chosen.

For this purpose, N-(2-chlorophenyl)acetoacetamide13 \(3\) has been prepared from the reaction of 2-chloroaniline \(2\) with ethyl acetoacetate \(1\) in the presence of potassium tert-butoxide, as a catalyst. This acetoacetamide \(3\) has been subjected to a three-component condensation with seven different arylaldehydes \(4a-g\) \textit{viz}. benzaldehyde \(4a\), 4-methylbenzaldehyde \(4b\), 4-methoxybenzaldehyde \(4c\), 4-chlorobenzaldehyde \(4d\), 4-(N,N-dimethylamino)benzaldehyde \(4e\), 3-nitrobenzaldehyde \(4f\), and furfural \(4g\) and against ammonia and four different primary amines \(5b-e\): \(n\)-propylamine, \(n\)-butyl amine, cyclohexylamine and benzyl amine. Four different experimental techniques, \textit{viz}. conventional heating, solvent-free, solid supported microwave heating, TMSI-mediated, and using an ionic liquid 1-\(n\)-butyl-3-methylimidazolium tetrafluoroborate[bmim]BF\(_4\) (Scheme I). The product obtained in each case has been characterized as the respective 4-aryl-1-substituted-3,5-bis[N-(aryl substituted)carbamoyl]-1,4-dihydropyridine \(6-40\) by their spectral and analytical studies. The synthetic methods have been compared in terms of percentages yield, reaction times and ease of isolation of products.

All the thirty five compounds have been tested for their acute toxicity while observing for gross behavioural changes in experimental animals (mice) by standard method14 upto an oral dose of 200 mg/kg (bw). Then, these compounds have been evaluated pharmacologically for the possible bronchodilatory or inhibition of bronchoconstriction by a standard method15,16 using guinea pigs.

Results and Discussion

Chemistry. The percentage yield of N-(2-chlorophenyl)acetoacetamide \(3\) has been improved considerably by using the base, potassium tert-butoxide. Among the four sets of reaction conditions employed for the three-component cyclocondensation reaction to obtain dihydropyridines, the TMSI-mediated method and the ionic-liquid method have been found to be almost on a par with each other. Both

![Scheme I](image-url)
the methods are useful even for ortho-substituted aldehydes and aldehydes with acid sensitive groups with excellent yields in the range of 75-87%. The TMSI-method makes use of acetonitrile as a solvent for reaction where as ionic liquid requires diethyl ether as a solvent for washing and both the methods proceed at ambient temperature with almost the same duration of the reaction time. The other merit happens to be the microwave irradiation method on a solid support of silica gel or acidic alumina. Among these adsorbents, silica gel has been found to be marginally more advantageous than alumina and as expected, all these three alternative methods are many more times superior than the conventional method, in all respects.

Pharmacology. All the thirty five bis-N-substituted-1,4-dihydropyridines of the present investigations have been found to be safe even at an oral dose of 1200 mg/kg (bw) and devoid of any gross behavioral effects. Their assay for bronchodilatory activity as studied by the protection against histamine–induced bronchoconstriction on guinea pigs has revealed that at a concentration of 200 µg/mL, some of the compounds could exhibit a moderate to good inhibition in comparison with 100% inhibition of the reference drug chlorpheniramine maleate at the same concentration. Compound 23 with a n-butyl group at 1-position and 4-chlorophenyl group at 4-position has been shown to be the most potent with 55% amongst the thirty five test compounds, the next being compound 4 with 1-cyclohexyl and 4-phenyl groups, causing 48% inhibition. The next one with closer percentage inhibition (46%) has been compound 34 with 1-cyclohexyl and 4-(3-nitrophenyl) substitution.

The present studies revealed another interesting fact that some of the test compounds are relatively more potent as agonists than antagonists, further a majority of compounds are agonists. Compound 19 with 1-cyclohexyl and 4-(4-methoxyphenyl) substituents has been found to be the most potent agonist with 72% potentiation and the next being the compound 35 with 1-benzyl and 4-(3-nitrophenyl) substituents causing 60% agonistic action. The next in order are compounds 18, 13, and 20. It could be noted from the results that the compounds with and benzyl substituent at 1-position are good agonists.

Experimental Section

Melting points were determined using the Toshniwal electrical melting point apparatus and are uncorrected. IR spectra were recorded on a Shimadzu FT IR-8700 spectrometer in KBr discs. 1H NMR spectra were recorded in CDCl₃ or CDCl₃+DMSO-d₆ with TMS as an internal reference on a Bruker 80 MHz FT-NMR spectrometer. Mass spectra were recorded on a GC-MS QP-1100 Shimadzu instrument (70 eV). A domestic LG Little Chef microwave oven was used for the microwave activated reactions. The CHN-analyses were conducted using the Perkin-Elmer 240 B analyzer.

Synthesis of N-(2-chlorophenyl)acetoacetamide, 3

(a) Conventional method. A mixture of ethyl acetoacetate (1, 13 g, 0.1 mole) and 2-chloro aniline (2, 12.7 g, 0.1 mole) were taken into a RB flask (250 mL) and dissolved in alcohol (15 mL). The reaction mixture was heated under reflux for half an hour on a water bath. Alcohol was removed from the reaction mixture under reduced pressure to the extent possible and the residue was cooled. The residue was triturated with dry ether and the resultant product was filtered, washed with small portions of dry ether and dried. The resultant compound was purified by recrystallization from aqueous alcohol to obtain a colorless crystalline solid: 10.82 g (65%); m.p. 108°C (lit13, m.p. 107-08°C).

(b) Improved method using catalyst. The reaction mixture as specified above was taken into a conical flask (250 mL) and a catalytic amount of potassium tert-butoxide dissolved in alcohol (25 mL) was added. The reaction mixture was shaken vigorously for half an hour while cooling the flask now and then. Completion of the reaction was checked by TLC and alcohol was removed and the residue was cooled and triturated with crushed ice (~100 g). The compound was filtered, washed with cold water and dried. The product was purified by crystallization from aq. alcohol; yield recorded was 90%.

IR (KBr): 3286(NH), 3037-3056(C-H, arom.), 2839-2920(C-H, aliph.), 1708 (C=O, ketone), 1685(C=O, amide), 1602(C=C, aromatic) and 1120 cm⁻¹; 1H NMR (CDCl₃): δ 2.28(s, 3H, -CO-CH₃), 2.56(s, 2H, -CO-CH₂-CO), 6.78 (br, s, 1H, D₂O exchangeable), 7.98 (br, s, 1H, Ar-H); MS : m/z 211 [M⁺], 213 [M+2], 176, 43 (100%) [CH₃-C≡O⁻].

Synthesis of 1-alkyl/aralkyl-4-Aryl-3,5-bis-[N-(2-chlorophenyl)-carbamoyl] -2,6-dimethyl-1,4-dihydropyridines, 6-40

(a) Conventional method. General Procedure: (2-Chlorophenyl)acetoacetamide (3, 4.18 g, 0.02 mole)
and an appropriate aromatic aldehyde (4a-g, 0.01 mole) were taken into a RB flask (250 mL) and dissolved in methanol (25 mL). Excess ammonia 5a or an appropriate primary amine (5b-e, 0.01 mole) was added while shaking. The reaction mixture was heated under reflux, on hot water-bath for 12-18 h (monitoring by TLC). Methanol was removed to the extent possible and the residue was cooled. It was triturated with crushed ice (~150 g) and the product was filtered, washed with cold water and dried. It was placed in silica gel column and eluted with pet ether-chloroform (3:1) mixture to get a pure compound. Yield: 23 to 52%.

(b) The solvent-free micro-wave irradiation method. General Procedure: N-(2-Chlorophenyl)-acetoacetamide (3, 0.02 mole) ammonium acetate (0.02 mole) or appropriate primary amine 5b-e (0.01 mole) and appropriate aromatic aldehyde 4a-g (0.01 mole) were mixed thoroughly with silica gel (~10 g) in a mortar. The reaction mixture was transferred to a Pyrex beaker (250 mL) and irradiated in a microwave oven for 4 min. The progress of reaction was monitored by TLC. On completion of the reaction, it was cooled and triturated with dichloromethane (3×50 mL). Silica gel was removed by filtration, washed with small portions of dichloromethane and the product was purified by recrystallization from pet ether-chloroform (3:1) mixture. Yield: 62-76%.

(c) The TMSI-mediated method. An appropriate aldehyde (4a-g, 10 mmole), N-(2-chlorophenyl)-acetoacetamide (3, 20 mmole) and ammoniumacetate (20 mmole) or appropriate primary amine (5b-e, 10 mmole) were suspended in acetonitrile (25 mL). Chlorotrimethyl silane (TMSCl, 10 mmole) was added to the suspension, drop wise while shaking, and the solvent was removed by a rotary vacuum evaporator under reduced pressure to obtain the product 6-40. Further purification was effected by recrystallization from pet ether-chloroform (3:1) mixture. Yield: 23 to 52%.

(d) Ionic liquid mediated method. To a mixture of N-(2-chlorophenyl) acetoacetamide (3, 10 mmole), appropriate aldehyde (4a-g, 5 mmole), and ammonium acetate (10 mmole) or appropriate primary amine (5b-e, 5 mmole), 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim] BF4 (5 mmole) was added and stirred at RT for 6-8.5 h while monitoring the progress of reaction by TLC. On completion of the reaction, the reaction mixture was washed with dry ether (3×25 mL). The combined ether extracts were concentrated in vacuo and the product was purified by recrystallization from pet ether-chloroform (3:1) mixture. Yield: 76-87%. The viscous ionic liquid left as residue was washed further with dry ether and dried at 80°C for activation and reuse.

Characterization data and response against histamine-induced contraction of the compounds are presented in Table I.

Spectral characterization data of new 1,4-dihydropyridines.

Compound 7: IR (KBr): 3357 (amide NH), 3030 (C-H, aromatic), 1690 (amide CO) 1605 (C=C, aromatic), 780 cm−1; 1H NMR (CDCl3): δ 1.12 (t, 3H, J = 6.9 Hz, CH3-CH2), 1.24 (sextet, 2H, J=7.0 Hz, H2-C(=CH2-CH2), 2.31 (s, 6H, C2-CH3 and C6-CH3), 3.56 (t, 2H, J=7.0 Hz, N-CH2), 5.63 (s, 1H, C4-H), 7.18-7.82 (m, 13H, Ar-H) and 8.42 (brs, 2H, D2O exchangeable, 2×CO-NH-); MS: M⁺ at m/z 534; 536 (M⁺+2), 538 (M⁺+4), 423, 408, 380, 77.

Compound 16: IR (KBr): 3218 (NH, DHP), 3355 (NH, amide), 1685 cm−1 (CO amide); 1H NMR (CDCl3 + DMSO-d6): δ 2.28 (s, 6H,C2-CH3 and C6-CH3) 3.76 (s, 3H,O-CH3), 4.84 (s, 1H, C2-H), 5.68 (s, 1H, NH-DHP), 6.83-7.72 (m, 12H, Ar-H) and 8.20 (brs, 2H, D2O exchangeable, 2×CO-NH-); MS: M⁺ at m/z 522, 524 (M⁺+2), 526 (M⁺+4).

Compound 29: IR (KBr): 3360 (NH, amide), 3010 (C-H, aromatic), 2920 (C-H, aliphatic), 1692 cm−1 (CO, amide); 1H NMR (DMSO-d6): δ 1.20-1.90 (m, 10H, 5×-CH2, cyclohexyl), 2.34 (s, 6H, C2-CH3 and C6-CH3), 3.12 (m, 1H, NCH, cyclohexyl), 3.76 (s, 6H, ArNMMe2), 5.02 (s, 1H, C4-H), 7.21-7.85 (m, 12H, Ar-H) and 8.28 (brs, 2H, D2O exchangeable, 2×CO-NH-).

Compound 40: IR (KBr): 3368 (NH, amide), 2985-3015 (C-H, aromatic), 2865-2900 (C-H,aliphatic), 1717 (amide CO) 1605 (C=C, aromatic), 780 cm −1; 1H NMR (CDCl3): δ 1.12 (t, 3H, J = 6.9 Hz, CH3-CH2), 1.24 (sextet, 2H, J=7.0 Hz, H2-C(=CH2-CH2), 2.31 (s, 6H, C2-CH3 and C6-CH3), 3.56 (t, 2H, J=7.0 Hz, N-CH2), 5.63 (s, 1H, C4-H), 7.18-7.82 (m, 13H, Ar-H) and 8.42 (brs, 2H, D2O exchangeable, 2×CO-NH-); MS: M⁺ at m/z 534; 536 (M⁺+2), 538 (M⁺+4), 423, 408, 380, 77.
<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Nature of the substituents</th>
<th>Mol. formula</th>
<th>m.p. (°C)</th>
<th>Found (Calcd)</th>
<th>% Antagonism* / Agonist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C H N</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>hydrogen</td>
<td>C${27}$H${23}$N${3}$O${2}$Cl$_{2}$</td>
<td>201</td>
<td>65.97 4.72 8.61</td>
<td>+20</td>
</tr>
<tr>
<td>7</td>
<td>n-propyl</td>
<td>C${30}$H${26}$O${2}$Cl${2}$N$_{3}$</td>
<td>206</td>
<td>67.50 5.39 7.92</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>n-butyl</td>
<td>C${31}$H${32}$N${3}$O${2}$Cl$_{2}$</td>
<td>208</td>
<td>68.09 5.72 7.71</td>
<td>+25</td>
</tr>
<tr>
<td>9</td>
<td>cyclohexyl</td>
<td>C${33}$H${36}$N${3}$O${2}$Cl$_{2}$</td>
<td>201</td>
<td>69.11 5.68 7.38</td>
<td>+48</td>
</tr>
<tr>
<td>10</td>
<td>benzyl</td>
<td>C${34}$H${34}$N${3}$O${2}$Cl$_{2}$</td>
<td>207</td>
<td>70.22 4.92 7.29</td>
<td>-30</td>
</tr>
<tr>
<td>11</td>
<td>hydrogen 4-methylphenyl</td>
<td>C${28}$H${28}$N${3}$O${2}$Cl$_{2}$</td>
<td>192</td>
<td>66.57 4.95 8.25</td>
<td>+30</td>
</tr>
<tr>
<td>12</td>
<td>n-propyl 4-methylphenyl</td>
<td>C${31}$H${34}$Cl${2}$N${3}$O$_{2}$</td>
<td>170</td>
<td>67.95 5.76 7.54</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>n-butyl 4-methylphenyl</td>
<td>C${32}$H${36}$Cl${2}$N${3}$O$_{2}$</td>
<td>206</td>
<td>68.39 5.96 7.55</td>
<td>-40</td>
</tr>
<tr>
<td>14</td>
<td>cyclohexyl 4-methylphenyl</td>
<td>C${34}$H${32}$Cl${2}$N${3}$O$_{2}$</td>
<td>208</td>
<td>69.34 5.95 7.02</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>benzyl 4-methylphenyl</td>
<td>C${35}$H${34}$Cl${2}$N${3}$O$_{2}$</td>
<td>200</td>
<td>70.35 5.34 7.15</td>
<td>+14</td>
</tr>
<tr>
<td>16</td>
<td>hydrogen 4-methoxyphenyl</td>
<td>C${28}$H${29}$N${3}$O${3}$Cl$_{2}$</td>
<td>201</td>
<td>64.49 4.83 8.12</td>
<td>+10</td>
</tr>
<tr>
<td>17</td>
<td>n-propyl 4-methoxyphenyl</td>
<td>C${31}$H${35}$Cl${2}$N${3}$O$_{3}$</td>
<td>218</td>
<td>66.07 5.54 7.52</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>n-butyl 4-methoxyphenyl</td>
<td>C${32}$H${37}$Cl${2}$N${3}$O$_{3}$</td>
<td>206</td>
<td>66.53 5.62 7.39</td>
<td>-48</td>
</tr>
<tr>
<td>19</td>
<td>cyclohexyl 4-methoxyphenyl</td>
<td>C${34}$H${33}$Cl${2}$N${3}$O$_{3}$</td>
<td>214</td>
<td>67.68 5.86 7.11</td>
<td>-72</td>
</tr>
<tr>
<td>20</td>
<td>benzyl 4-methoxyphenyl</td>
<td>C${35}$H${35}$Cl${2}$N${3}$O$_{3}$</td>
<td>224</td>
<td>68.73 5.12 6.94</td>
<td>-40</td>
</tr>
<tr>
<td>21</td>
<td>hydrogen 4-chlorophenyl</td>
<td>C${27}$H${23}$Cl${2}$N${3}$O$_{2}$</td>
<td>221</td>
<td>61.51 4.18 7.93</td>
<td>+10</td>
</tr>
<tr>
<td>22</td>
<td>n-propyl 4-chlorophenyl</td>
<td>C${30}$H${26}$Cl${2}$N${3}$O$_{2}$</td>
<td>236</td>
<td>63.38 4.91 7.45</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>n-butyl 4-chlorophenyl</td>
<td>C${31}$H${28}$Cl${2}$N${3}$O$_{2}$</td>
<td>203</td>
<td>65.81 5.25 7.26</td>
<td>+55</td>
</tr>
<tr>
<td>24</td>
<td>cyclohexyl 4-chlorophenyl</td>
<td>C${33}$H${32}$Cl${2}$N${3}$O$_{2}$</td>
<td>247</td>
<td>65.18 5.27 6.80</td>
<td>+12</td>
</tr>
<tr>
<td>25</td>
<td>benzyl 4-chlorophenyl</td>
<td>C${34}$H${34}$Cl${2}$N${3}$O$_{2}$</td>
<td>246</td>
<td>66.12 4.62 6.88</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>hydrogen 4(N,N-dimethyl amino)phenyl</td>
<td>C${29}$H${30}$N${4}$O${2}$Cl$_{2}$</td>
<td>200</td>
<td>65.12 5.30 10.55</td>
<td>-24</td>
</tr>
<tr>
<td>27</td>
<td>n-propyl 4(N,N-dimethyl amino)phenyl</td>
<td>C${32}$H${34}$N${4}$O${2}$Cl$_{2}$</td>
<td>204</td>
<td>66.63 5.82 9.79</td>
<td>-24</td>
</tr>
<tr>
<td>28</td>
<td>n-butyl 4(N,N-dimethyl amino)phenyl</td>
<td>C${33}$H${36}$N${4}$O${2}$Cl$_{2}$</td>
<td>212</td>
<td>67.11 6.02 9.56</td>
<td>-20</td>
</tr>
<tr>
<td>29</td>
<td>cyclohexyl 4(N,N-dimethyl amino)phenyl</td>
<td>C${35}$H${38}$N${4}$O${2}$Cl$_{2}$</td>
<td>204</td>
<td>68.19 6.22 9.14</td>
<td>-9</td>
</tr>
</tbody>
</table>

---Contd---
Table I — Characterization data and response against histamine induced contraction of new 1,4-dihydropyridines—Contd

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Nature of the substituents</th>
<th>Mol. formula</th>
<th>m.p. (°C)</th>
<th>Elemental Analyses Found (Calcd)</th>
<th>% Antagonism* / Agonist</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>benzyl 4(N,N-dimethyl amino)phenyl</td>
<td>C_{36}H_{34}N_{4}O_{2}Cl_{2}</td>
<td>254</td>
<td>C 69.21, H 5.38, N 9.04 (69.12, 5.44, 8.96)</td>
<td>+28</td>
</tr>
<tr>
<td>31</td>
<td>hydrogen 3-nitrophenyl</td>
<td>C_{27}H_{22}Cl_{2}N_{4}O_{4}</td>
<td>196</td>
<td>C 60.31, H 4.09, N 10.38 (60.34, 4.13, 10.43)</td>
<td>-20</td>
</tr>
<tr>
<td>32</td>
<td>n-propyl 3-nitrophenyl</td>
<td>C_{30}H_{28}Cl_{2}N_{4}O_{4}</td>
<td>198</td>
<td>C 62.01, H 4.75, N 9.51 (62.18, 4.87, 9.67)</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>n-butyl 3-nitrophenyl</td>
<td>C_{31}H_{30}Cl_{2}N_{4}O_{4}</td>
<td>192</td>
<td>C 62.68, H 5.01, N 9.55 (62.73, 5.09, 9.44)</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>cyclohexyl 3-nitrophenyl</td>
<td>C_{33}H_{32}Cl_{2}N_{4}O_{4}</td>
<td>200</td>
<td>C 63.85, H 5.15, N 9.15 (62.98, 5.21, 9.04)</td>
<td>+46</td>
</tr>
<tr>
<td>35</td>
<td>benzyl 3-nitrophenyl</td>
<td>C_{34}H_{35}Cl_{2}N_{4}O_{4}</td>
<td>180</td>
<td>C 65.01, H 4.64, N 8.86 (65.08, 4.50, 8.93)</td>
<td>-60</td>
</tr>
<tr>
<td>36</td>
<td>hydrogen 2-furyl</td>
<td>C_{25}H_{21}N_{3}O_{3}Cl_{2}</td>
<td>214</td>
<td>C 62.36, H 4.42, N 8.80 (62.24, 4.35, 8.71)</td>
<td>-13</td>
</tr>
<tr>
<td>37</td>
<td>n-propyl 2-furyl</td>
<td>C_{28}H_{27}N_{3}O_{3}Cl_{2}</td>
<td>220</td>
<td>C 64.25, H 5.10, N 8.09 (64.12, 5.15, 8.01)</td>
<td>-15</td>
</tr>
<tr>
<td>38</td>
<td>n-butyl 2-furyl</td>
<td>C_{29}H_{29}O_{3}N_{3}Cl_{2}</td>
<td>222</td>
<td>C 64.77, H 5.45, N 7.90 (64.68, 5.39, 7.80)</td>
<td>-20</td>
</tr>
<tr>
<td>39</td>
<td>cyclohexyl 2-furyl</td>
<td>C_{31}H_{31}O_{3}N_{3}Cl_{2}</td>
<td>218</td>
<td>C 66.06, H 5.42, N 7.53 (65.95, 5.49, 7.44)</td>
<td>-19</td>
</tr>
<tr>
<td>40</td>
<td>benzyl 2-furyl</td>
<td>C_{32}H_{27}N_{3}O_{3}Cl_{2}</td>
<td>223</td>
<td>C 67.01, H 4.83, N 12.34 (67.14, 4.75, 12.39)</td>
<td>-27</td>
</tr>
</tbody>
</table>

*(-) : Agonist; (+) : Antagonist

chlorpheniramine maleate
+100

1695 (C=O,amide), 1607 cm⁻¹ (C=C, aromatic); ¹H NMR (CDCl₃): δ 2.48 (s, 6H, C₂-CH₃ and C₆-CH₃), 4.46 (s, 2H, -N-CH₂-Ph), 4.92 (s, 1H, C₄-H), 6.80-7.05 (m, 3H, 2-furyl), 7.17-7.68 (m, 8 H, Ar-H) and 8.26 (br s, 2H, D₂O exchangeable, 2×CO-NH).

Pharmacology

Acute toxicity studies and gross behavioural changes. Toxicity and gross behavioural studies were carried by standard methods. Albino mice were employed as experimental animals and test compounds were administered orally in graded doses of 50, 100, 250, 500, 1000 and 1200 mg/kg (bw). The animals were observed for 72 h, for behavioural changes and mortality.

Bronchodilatory activity/bronchoconstriction activity. This was evaluated by determining the percentage protection against histamine-induced broncho-constriction on guinea pig. Male guinea pigs weighing 375-400 g were placed in a plastic chamber and exposed to histamine aerosol (0.4% w/v) produced by a Halpern column and a compressed air supply. The pre-convulsion times two days before the administration of test compounds were determined. The protective effect of the drug was evaluated in guinea pigs exposing them to the histamine aerosol for 45 min. (sometimes 24 or 48 h) after oral administration. Recovery of the preconvulsion time to the control value was verified at 48 and 96 h after treatment. The percentage of protection was assessed according to Armitage et al.

Acknowledgements

The authors are grateful to the authorities of Kakatiya University for necessary facilities. One of the authors (VMR) is thankful to the University Grants Commission for the Major Research Project.

References

Suresh et al.: Synthesis and Bronchodilatory Activity of Dihydropyridines

