The array dimension is taken as \(k_0 d = 5 \) such that the array may be operative in the range from 6 to 300 MHz.

Using Eq. (7), the horizontal radiation pattern is obtained for \(\theta = \pi/2 \) and is given by

\[
F\left(\frac{\pi}{2}, \phi \right) = A \left[1 + \sum_{m=2}^{5} \left\{ \exp(2j(m-1)(\Psi + k_0 \cos \phi)) \right. \right.
\]
\[
+ \left. \exp \left(j(m-1) \left(\Psi + k_0 d \cos (\phi - \alpha) \right) \right) \right] \quad \ldots(8)
\]

The horizontal radiation patterns showing the variation of \(F(\pi/2, \phi) \) with \(\phi \) for two different values of \(\Psi \) angles 0 and \(\pi \) are shown in Fig. 2.

For the study of the vertical radiation patterns, we have chosen the angle \(\phi = \alpha/2 = \pi/4 \) as a particular case. Substituting the above values, the expression for the vertical radiation pattern reduces to

\[
F\left(\frac{\pi}{4}, \frac{\pi}{4} \right) = A \left[1 + 2 \sum_{m=2}^{5} \exp \left(j(m-1) \left(\Psi + k_0 d \cos \frac{\alpha}{2} \sin \theta \right) \right) \right] \quad \ldots(9)
\]

The variation of \(F(0, \pi/4) \) with \(\theta \) is shown in Fig. 3 for two values of \(\Psi \) as 0 and \(\pi \).

In Fig. 2 which shows the variation of \(F(\pi/2, \phi) \) with \(\phi \) in the horizontal plane, a mirror symmetry about 180° is observed. For \(\Psi = 0 \), highly directive beams are obtained along 0° and 90° and due to mirror symmetry, also along 180° and 270° with half-power beam-width angle of 12°. It is interesting to note that no side-lobes appear and the minima occur at 45° and 135°. However, for \(\Psi = \pi \), the maximum occurs along 45° with the half-power beam-width angle of 15°. Further, it may be observed that a secondary lobe with field-intensity of 67% of the main lobe and a few other minor lobes of low field-intensities also appear.

The vertical radiation patterns shown in Fig. 3 also exhibit a mirror symmetry about 180°. The field pattern for \(\Psi = 0 \) is found to be sufficiently directive. The half-power beam-width angle of the main lobe is about 20°. The maxima occur along 0° and 180° with small secondary lobes appearing along 30°, 70°, 110° and 150°. However, for \(\Psi = \pi \), the central direction of the main lobe is shifted by 90° where it is bifurcated. The maximum intensities are at 60° and 120°. The half-power beam-width angle of the bifurcated main beam is as large as 84°. There occur side-lobes with intensity reaching up to 33% of that of the main lobe.

Although the same scale has been chosen for plotting the curves for \(\Psi = 0 \) and \(\Psi = \pi \), it must be mentioned that only the relative intensities are depicted and in particular, the absolute maximum field intensity in the case \(\Psi = 0 \) is much greater than in the case \(\Psi = \pi \).

For the chosen array dimension of the V-shaped array, the radiation patterns are highly directive in the horizontal plane both for \(\Psi = 0 \) and \(\Psi = \pi \) and also in the vertical plane for \(\Psi = 0 \).

The authors are indebted to Prof. P. Khastgir for his helpful discussion. One of the authors (D.B.) is thankful to the CSIR. New Delhi, for the award of junior research fellowship.

References

5. SUN, D. F., V-antennas, generalized model analysis (State University New York, Strong Brook, USA) 1970, 196.
7. MISSLER, E., Techn. Mitt. RFZ (Germany), 15 (1971), 82.

Mutual Impedance of a Dipole Antenna in Magnetoplasma

D.C. AGARWAL

J. K. Institute of Applied Physics and Technology
University of Allahabad, Allahabad-2

Received 20 May 1974; revised received 2 August 1974

The mutual impedance of a dipole antenna in an anisotropic plasma has been calculated following the quasi-static approximation method.

In an anisotropic medium the self impedance and the mutual impedance of an antenna are different. Self-impedance of a dipole antenna in an anisotropic plasma has been studied by several investigators. The importance of the study of the mutual impedance of a dipole antenna in an anisotropic plasma has been discussed by Miyazaki. The purpose of the present communication is to calculate the mutual impedance of the dipole antenna in an anisotropic plasma following the quasi-static approximation method.

*This work was done by the author when he was at the Department of Electrical Engineering, Tohoku University, Sendai, Japan.
Case 2

When $l_1 = l_2 = l$, but the magnetic field is perpendicular to the dipole, Eq. (1) reduces to

$$Z_{21} = \frac{1}{j\omega \pi \varepsilon_0 K' l} \left\{ \ln \left(\frac{a l}{2} + \sqrt{a^2 l^2 + d^2} \right) \right. \\
+ \left. \frac{1}{2a l} \left\{ 3d + \sqrt{4a^2 l^2 + d^2} - 4 \sqrt{a^2 l^2 + d^2} \right\} \right\}.
$$

... (2)

When $d \to 0$, Eq. (2) agrees with that of Balmain1.

Case 3

When the antennas are in horizontal direction (collinear to each other, the position of antennas is as

$$Z_{21} = \frac{a}{j\omega \pi \varepsilon_0 K' l} \left\{ \ln \left(\frac{l}{2} + \sqrt{a^2 d^2 + l^2} \right) \right. \\
+ \left. \frac{1}{2l} \left\{ 3ad + \sqrt{4a^2 l^2 + d^2} - 4 \sqrt{a^2 d^2 + l^2} \right\} \right\}.
$$

... (3)

Now, if $d \to 0$, Eq. (3) is reduced to the expression for the self impedance of antennas. However, in this case Eq. (3) does not reduce to the expression for the self impedance of the dipole antenna as derived by Balmain1.

Case 3

When the antennas are in horizontal direction (collinear to each other, the position of antennas is as

$$Z_{21} = \frac{a}{j\omega \pi \varepsilon_0 K' l} \left\{ \ln \left(\frac{l}{2} + \sqrt{a^2 d^2 + l^2} \right) \right. \\
+ \left. \frac{1}{2l} \left\{ 3ad + \sqrt{4a^2 l^2 + d^2} - 4 \sqrt{a^2 d^2 + l^2} \right\} \right\}.
$$

... (3)

Now, if $d \to 0$, Eq. (3) is reduced to the expression for the self impedance of antennas. However, in this case Eq. (3) does not reduce to the expression for the self impedance of the dipole antenna as derived by Balmain1.

Case 3

When the antennas are in horizontal direction (collinear to each other, the position of antennas is as
Fig. 3—Plot of mutual impedance versus admittance (parallel antenna, $\theta=0^\circ$)

Fig. 4—Plot of impedance versus admittance (parallel antennas, $\theta=90^\circ$)

Fig. 5—Plot of mutual impedance versus admittance (colinear antennas, $\theta=0^\circ$)

Fig. 6—Plot of mutual impedance versus admittance (colinear antennas, $\theta=90^\circ$)
shown in Fig. 2. The mutual impedance between the
two antennas can be derived as

\[
Z_{11} = \frac{a}{j\omega 4\pi \varepsilon_0 K' l_1 l_2 \sqrt{\sin^2 \theta + a^2 \cos^2 \theta}} \left[d \ln \frac{(d-l_1)^2 (d+l_1)^2 (d+l_2)^2 (d-l_2)^2}{d^4 (d+l_1+l_2) (d-l_1+l_2) (d+l_1-l_2) (d-l_1-l_2)}
+ l_1 \ln \frac{(d+l_1)^2 (d-l_1+l_2) (d-l_1) (d-l_1-l_2)}{(d-l_1)^2 (d+l_1+l_2) (d+l_1-l_2)}
+ l_2 \ln \frac{(d+l_2)^2 (d-l_1+l_2) (d-l_2) (d-l_1-l_2)}{(d-l_2)^2 (d+l_1+l_2) (d+l_1-l_2)} \right] \quad \ldots (4)
\]

In the presence of parallel magnetic field and when
l_1 = l_2 = l, Eq. (4) reduces to

\[
Z_{11} = \frac{1}{j4\pi \varepsilon_0 K' l} \left[\frac{d}{l} \ln \frac{(d+l)^4 (d-l)^4}{d^4 (d+2l) (d-2l)}
+ 2 \ln \frac{(d+l)^2 (d-2l)}{(d-l)^2 (d+2l)} \right] \quad \ldots (5)
\]

and in the presence of perpendicular magnetic field
and with l_1 = l_2 = l Eq. (4) reduces to

\[
Z_{11} = \frac{a}{j4\pi \varepsilon_0 K' l} \left[\frac{d}{l} \ln \frac{(d+l)^4 (d-l)^4}{d^4 (d+2l) (d-2l)}
+ 2 \ln \frac{(d+l)^2 (d-2l)}{(d-l)^2 (d+2l)} \right] \quad \ldots (6)
\]

The mutual impedance has been calculated with
Eqs. (2), (3), (5) and (6) respectively and the results
are shown in Figs. 3, 4, 5, and 6. On making a compare­
comparison between the mutual impedance as calculated
above and the self impedance calculated by Balmain,
it is found that the difference is not much.

The author is grateful to Prof. S. Adachi for
suggesting the problem. He is also thankful to Prof.
Y. Mushiake and Asst. Prof. T. Ishizone for their
useful discussions on the subject. The financial assis­
tance by the Tohoku University is gratefully
acknowledged.

References