Structural requirements of some derivatives based on natural alkaloid lycorine for their dengue inhibitory activity to accelerate dengue drug discovery efforts

Monika Awasthi, Sk. Abdul Amin, Vijaya Shukla, Sanskar Jain, Umesh Kumar Patil and Shovanlal Gayen*

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences,
Dr. Harisingh Gour University (A Central University), Sagar 470003, Madhya Pradesh, India

Received 12 May 2016; Revised 08 June 2016

Dengue virus (DENV) is one of the life threatening problems in tropical countries including India. During the last few decades, 50-100 million dengue viral infections were reported specially in Asia and Pacific region. In search of novel DENV inhibitor, the present study tried to correlate the DENV inhibitory data with a series of natural alkaloid lycorine derivatives. A statistically robust QSAR model is generated \[R = 0.944; R_s^2 = 0.865; Q^2 = 0.741; R^2_{pred} = 0.51593; cR^2_p = 0.826 \] with five descriptors such as GATS2c, ZMIC3, T_N_O_7, Quadrupole1 and nHsNH2. The reliability of the model was confirmed by Golbraikh and Tropsha acceptable model criteria. The QSAR result suggests that the hydroxyl group as well as linear aliphatic at R1 position is very important for the biological potency, whereas, amino and ether substituent at the R2 is detrimental. The study also revealed that bulky esterification at the R2 is not tolerable. Additionally, lead molecule showed good absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The findings may be useful to design potent lycorine-based anti-dengue compounds in future.

Keywords: ADMET, Dengue, Lycorine, MLR, Natural alkaloid, NS4A, QSAR.

IPC code: Int. cl. (2015.01)− A61K 36/00

Introduction

Dengue fever is currently a life threatening problem in tropical zone countries like India1-4. The causative agent for the dengue fever is RNA virus which belongs to the family Flaviviridae. This dengue virus (DENV) is transmitted by the mosquito Aedes aegypti. Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe and life threatening disease, especially in children3. Therefore, there is an urgent need to discover small molecules as drugs for the treatment. Different non-structural proteins of the virus (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are excellent drug targets for the disease as they are important for the replication of the virus5-8.

Nowadays, drug discovery from herbal or natural source is in much demand. There are approximately 60 % of natural drugs developed as anti-proliferative agents and 25 % of drug as antiviral agents9,10. These agents are estimated in the form of various crude extract, which are extracted from glycosidal, alkaloidal, flavonoides, and carbohydrate source in the form of essential oil or purified compounds. Glycosides, alkaloids, and flavonoids are groups of secondary metabolites while carbohydrate is a primary metabolite. Various flavanoids and alkaloids possess antiviral activities. One of the alkaloids named lycorine that is obtained from plants of Amaryllidaceae family has various biological activities such as antiviral activity against different viral infections like Yellow fever virus, polio virus, vaccinia virus, and herpes virus by suppressing RNA replication of virus and suppressing its translation process9,10. It showed antiviral action against dengue and related West Nile virus also. It has been reported that the lycorine derivatives may target dengue non-structural protein NS4A9. NS4A protein is one of the promising drug targets, but unfortunately, till date no crystal structure of NS4A is reported. So, the structure-based modeling is restricted in order to find out potent DENV inhibitor. Therefore, ligand-based modeling may serve as an important alternative approach to accelerate the dengue inhibitor designing process.

In this study, quantitative structure activity relationship (QSAR) modeling has been performed on
some lycorine based derivatives having anti-dengue activities as a part of our rational drug design program to identify the necessary structural features for the anti-dengue activity.

Materials and Methods
Dataset and biological activity

The anti-dengue activities of a series of lycorine derivatives (Table 1) were selected from Wang et al. in order to develop a chemometric tool. The in vitro activity values in logarithmic scale (pEC_{50}) are considered as dependent variable.

Generation and selection of descriptors

In order to sketch 2D structures of these lycorine derivatives, ChemDraw Ultra 8.0 software was used. Then, those structures were converted to their corresponding 3D structures and subsequently, energy minimization process was carried out by batch energy minimization method with RMS gradient (convergence criterion) of 0.01 kcal/mol using a MMFF94s (Merck molecular force field) force field and charge in the VLife MDS platform. Finally, various physico-chemical like electronic, thermodynamic, and spatial; structural descriptors, like retention index (chi), chain path count, path count, atomic valence connectivity index (chiV), element count, path cluster, semi-empirical, estate number, partition coefficient, molecular weight, molecular refractivity, and topological index; and Baumann alignment-independent (AI) descriptors were calculated by using VLife MDS 4.4 software. Additionally, a pool of 2D PaDEL-descriptors (constitutional, topological, electronic, thermodynamic, geometric, and autocorrelation descriptors) using open source “PaDEL-descriptor” software was calculated. These descriptors were taken as an independent tool for QSAR model development. From these large dataset descriptors having constant value (variance < 0.0001) were eliminated initially from our study to reduce redundancy.

Test set and training set selection

The splitting of dataset is a very important factor as per as the justification of the chemometric model is concerned. The chemical nature of the training set compounds has influence in the predictive ability of a model. A number of methods are there to divide the dataset. Y-based ranking method is one of the frequently used methods which divide dataset based on the biological activity in a non-random way.

In this study, the division of whole dataset was done by Y-based ranking method into two sets i.e., test set and training set. The division was performed in the 1:4 ratio, which means that each of the fourth compound was selected for the test set and the rest were taken in the training set.

Correlation analysis

Prior to correlation analysis, dataset thinning was performed by using Data Pre-treatment tool keeping variance cut of 0.0001, correlation cut-off 0.70. Then, correlation studies were carried out in STATISTICA 7 software by taking biological activity (pEC_{50}) as dependent parameter, whereas descriptors values were considered as independent variable. The pairs of descriptors having intercorrelation more than 0.6 were not considered in order to avoid any error and decrease redundancy. Finally, model was constructed with five variables by maintaining the recommended ratio of the number of predictor parameters to number of data point of 1:5.

Validation of the model

After correlation analysis, the MLR models were generated and validated by statistical parameters including correlation coefficient (R^2), adjusted square correlation (R^2_{adj}), variance ratio (F) standard error of estimation (SEE), LOO cross-validated R^2 (Q^2), standard deviation error of prediction (SDEP), and predicted residual sum of square (PRESS). External validation of test compounds was judged through predicted $R^2 (R^2_{pred})$ and R^2_m (modified r^2) of constructed QSAR model. The external validation parameter R^2_{pred} was calculated by using the following equation:

$$R^2_{pred} = 1 - \frac{\sum(y_i - \bar{y}_i)^2}{\sum(y_i - y_{mean})^2}$$

where, y_i and \bar{y}_i are the actual and predicted activity of the i^{th} molecule in the training set, respectively, and y_{mean} is the average activity of all molecules in the test set.

To calculate the r^2_m ($r^2_{m(test)}$) metrics, the following equation was used:

$$r^2_{m(test)} = r^2 - \left(1 - \sqrt{r^2 - r^2_0}\right)$$

where, r^2 and r^2_0 are the squared correlation coefficients between the actual and predicted values of the test set compounds with and without intercept respectively.
<table>
<thead>
<tr>
<th>Compound no</th>
<th>Smile format</th>
<th>Biological activity (EC\textsubscript{50})</th>
<th>Biological activity (\textit{pEC}\textsubscript{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c12cc3(ec1CN1[C@H]4[C@H]2[C@H]C@HOC(=O)COC(=O)COC3</td>
<td>25.4</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>c12cc3(ec1CN1[C@H]4[C@H]2[C@H]C@HOC(=O)COC3</td>
<td>0.4</td>
<td>6.4</td>
</tr>
<tr>
<td>3</td>
<td>c12cc3(ec1CN1[C@H]4[C@H]C@HOC(=O)OCCO3</td>
<td>28.7</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)CCCCC)OC(O)OCO3</td>
<td>120.1</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>150.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OCOCO3</td>
<td>21.0</td>
<td>4.7</td>
</tr>
<tr>
<td>7</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>48.2</td>
<td>4.3</td>
</tr>
<tr>
<td>8</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>72.4</td>
<td>4.1</td>
</tr>
<tr>
<td>9</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>150.3</td>
<td>3.8</td>
</tr>
<tr>
<td>10</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>108.4</td>
<td>4.0</td>
</tr>
<tr>
<td>11</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>90.6</td>
<td>4.0</td>
</tr>
<tr>
<td>12</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>181.0</td>
<td>3.7</td>
</tr>
<tr>
<td>13</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>111.9</td>
<td>3.9</td>
</tr>
<tr>
<td>14</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>1.8</td>
<td>5.7</td>
</tr>
<tr>
<td>15</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>0.8</td>
<td>6.1</td>
</tr>
<tr>
<td>16</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>0.5</td>
<td>6.3</td>
</tr>
<tr>
<td>17</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>40.6</td>
<td>4.4</td>
</tr>
<tr>
<td>18</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>220.4</td>
<td>3.7</td>
</tr>
<tr>
<td>19</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>198.6</td>
<td>3.7</td>
</tr>
<tr>
<td>20</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>31.4</td>
<td>4.5</td>
</tr>
<tr>
<td>21</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@HOC(=O)OC(O)OCO3</td>
<td>229.8</td>
<td>3.6</td>
</tr>
<tr>
<td>22</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>127.2</td>
<td>3.9</td>
</tr>
<tr>
<td>23</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>100.3</td>
<td>4.0</td>
</tr>
<tr>
<td>24</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>19.6</td>
<td>4.7</td>
</tr>
<tr>
<td>25</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>28.4</td>
<td>4.5</td>
</tr>
<tr>
<td>26</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>36.0</td>
<td>4.4</td>
</tr>
<tr>
<td>27</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>8.2</td>
<td>5.1</td>
</tr>
<tr>
<td>28</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>8.9</td>
<td>5.1</td>
</tr>
<tr>
<td>29</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>3.6</td>
<td>5.4</td>
</tr>
<tr>
<td>30</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>5.0</td>
<td>5.3</td>
</tr>
<tr>
<td>31</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>30.2</td>
<td>4.5</td>
</tr>
<tr>
<td>32</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>39.6</td>
<td>4.4</td>
</tr>
<tr>
<td>33</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>58.1</td>
<td>4.2</td>
</tr>
<tr>
<td>34</td>
<td>c12cc3(ec1CN1[C@H][C@H]C@Hn1cecc(nn1)CCCG)OC(O)</td>
<td>121.4</td>
<td>3.9</td>
</tr>
</tbody>
</table>

parent molecule - lycorine
The internal cross-validated R^2 (Q^2), external predicted R^2 (R^2_{pred}) and modified r^2 (r_m^2) value should be greater than 0.50 for acceptance of a QSAR model. Additionally, Y randomization test was carried out and the obtained cR^2_p value should be higher than that of 0.50 for acceptability. The robustness of the QSAR equation was judged by performing this Y-randomization test by using the following equation:

$$cR^2_p = R \times \sqrt{R^2 - R^2_p}$$

where, R^2 is the coefficient of the non-random model and R^2_p is the squared average correlation coefficient of the randomized models.

Applicability domain and VIF

Applicability domain is considered as a region in chemical space that is made through model response and model descriptor. All compounds falling in this space were defined to show good prediction and they are considered as reliable. Variation inflation factor is a determining parameter of intercorrelation of all descriptors to build a model. The VIF value is obtained from $1/1 - r^2$ where, r^2 is known as multiple correlation coefficients i.e., the contribution of one descriptor regressed on the other descriptors. If VIF obtained as greater than that of 10 that means one descriptor may be hidden by other descriptors.

ADMET predictions

In order to understand the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile of one of the lead molecule (compound 2) of this series, we calculated in silico ADMET prediction. The ADMET properties were calculated from admetSAR tool. Prior to entry of a molecule in the clinical trials, it is better to know the ADMET profile initially as the experimental evaluations require money and high work load.

Results and Discussion

Using the stepping criteria based on F value ($F = 4$ for inclusion; $F = 3.99$ for exclusion), the following best equation was derived with five variables:

$$pEC_{50} = 18.43108 \pm 1.336 - 7.14225 (\pm 0.93281)$$

GATS2c -0.17168 (±0.02513) ZMIC3 - 1.52564 (±0.18602) $T_{N-O} - 0.018$ (±0.00474)

Quadrapole1 - 1.30672 (±0.32572) $nHsNH2$

$$n_{Train} = 26; R = 0.944; R^2 = 0.89194; R^2_A = 0.865; F (5, 20) = 33.017; SEE = 0.296; Q^2 = 0.741; PRESS = 4.17989; SDEP = 0.40095; Q^2_{LOO} = 0.737; r^2_{m(LOO)} = 0.7461; \Delta r^2_{m(LOO)} = 0.15277; n_{Test} = 8; R^2_{pred} = 0.51593; r^2_{m(test)} = 0.54229; \Delta r^2_{m(Test)} = 0.103; r^2_{m(overall)} = 0.69003; \Delta r^2_{m(overall)} = 0.09227; cR^2_p = 0.826.$$

The model (1) explains 86.5 % and predicts 74.1 % of variances of the DENV inhibitory activity and variance ratio ($F = 33.017$) at specified degrees of freedom ($df = 20$). The correlation matrix among descriptors used to develop QSAR model (1) is given in the Supplementary Table 1. This model successfully passed the p-statistics ($p<0.05 = 95 \%$ significance) as demonstrated in the Supplementary Table 2.

The model is robust enough as guided by the Y-randomization cR^2_p values more than 0.5 ($cR^2_p = 0.826$). As a result of the lowest p-value (Supplementary Table 2) and the acceptable cross-validated Q^2 such as Leave-one-out (LOO) and leave-3-out method (L3O) suggested that an optimum fit was found. The values of all the statistical parameters being within the acceptable limit reflect the internal and external predictive potential of the developed model (1). Although the model (1) has a high cross-validated R^2 ($Q^2_{LOO} = 0.741; Q^2_{L3O} = 0.737$) it may not imply that its predictive ability is high. To ensure the reliable predictive ability of QSAR model, Golbraikh and Tropsha formulated a set of criteria for evaluation. Interestingly the model (1) successfully passed the Golbraikh and Tropsha acceptable model criteria (Table 2).

The values of the distance score, mean distance score, and normalized mean distance score for each compounds in the model (1) is given in the Supplementary Table 3. The test of the applicability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Threshold value</th>
<th>Model (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q^2</td>
<td>$Q^2 > 0.5$</td>
<td>0.74144</td>
</tr>
<tr>
<td>r^2</td>
<td>$r^2 > 0.6$</td>
<td>0.68347</td>
</tr>
<tr>
<td>$r_0 \cdot r_0$</td>
<td>$</td>
<td>r_0 \cdot r_0</td>
</tr>
<tr>
<td>k</td>
<td>$0.85 < k < 1.15$</td>
<td>0.97402</td>
</tr>
<tr>
<td>k'</td>
<td>$0.85 < k' < 1.15$</td>
<td>1.01757</td>
</tr>
<tr>
<td>$(r^2 - r_0^2)/r^2$</td>
<td>$(r^2 - r_0^2)/r^2 < 0.1$</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

where, (i) Q^2 is the cross-validated correlation coefficient, (ii) The squared correlation coefficient between the observed vs predicted response values of the test set compounds, (iii) while r_0 and r_0' represent the corresponding values for regression through origin (observed vs. predicted and predicted vs. observed, respectively), and (iv) the slope of the regression lines through the origin are assigned by k and k'.

Table 2—Golbraikh and Tropsha acceptable model criteria of model (1)
domain by the Euclidean distance approach is graphically represented in the Supplementary Fig 1.

The observed, LOO-predicted, and activities of all compounds of model (1) are given in Supplementary Table 4. The residual plot between predicted and experimental values of train set (light blue box) and test set (red box) compounds for the model (1) is shown in Supplementary Fig 2 and the Observed vs. LOO-predicted activities of training and test set compounds for model (1) was plotted graphically (Fig 1).

The values of all the statistical parameters being within the acceptable limit reflect the statistical potential of the developed model (1).

Descriptors contribution in model (1)

The descriptor $GATS2c$ belongs to 2D-autocorrelation descriptor which has the highest contribution (Fig 2) towards DENV inhibitory activity as suggested by the model (1). This distance type function is calculated for each atom of the compound by considering charges separation. Here, the compounds with high $GATS2c$ values show poor biological activity as this descriptor contributed negatively towards biological activity data (Table 3). This means that $GATS2c$ values should be considered at the time of designing new lycorine derivatives. This result can be explained by showing compounds 32-34 (having aromatic group at the R_1) and compounds 27-30 (having linear aliphatic group at the R_1) where upon decreasing of $GATS2c$ values form aromatic to linear aliphatic substituent at the R_1 influenced the outcome of DENV inhibitory values. Interestingly, this descriptor also explained that hydroxyl substitution at the R_2 (compound 15; $GATS2c = 1.054$) is tolerable, whereas, ether substitution at the R_2 is detrimental (compound 17; $GATS2c = 1.247$). Thus, upon increasing $GATS2c$ values lead to loss in potency.

Next descriptor is $ZMIC3$, which also contributed negatively to the DENV inhibitory activity. Higher values of the Z-modified information content index are found in compounds having bulkier ester group at R_2 position (compounds 3-11) and these compounds show low/moderate biological potency. This result can be understood by comparing compounds 7, 12 (bulkier ester group substitution) and compounds 2, 15, 16 (simple hydroxyl group) where the presence of bulkier ester group substitution at R_2 position (bulkier ester group > simple hydroxyl group) would result in lesser biological activities as $ZMIC3$ values are increased. Therefore, bulky esterification is not tolerable at R_2 position.

The negative contribution of the descriptor $T_N_O_7$ indicates that the presence of nitrogen atoms separated from oxygen atoms by seven bond distance would result in decrease of biological activity. The compound 23 having maximum number of nitrogen atoms separated from oxygen atoms by seven bond distance is poorly active. Interestingly, no nitrogen atom separated from oxygen atoms by seven bond distance is found in case of best active compound 2 ($EC_{50} = 0.4$ µM) and similar active compounds 15 ($EC_{50} = 0.8$ µM) and 16 ($EC_{50} = 0.5$ µM).

The next descriptor $Quadrupole1$, similar to dipole moment defines the charge separation and the interactions with the receptor. Highest $Quadrupole1$ value (52.907) is observed in compound 12, which is
one of the least active compounds. Interestingly, this descriptor explained that ketone group at R2 position (compound 16) is more suitable than hydroxyl (compound 15) substitution at the R2 and this finding positively support the SAR studies reported earlier {compound 16 (EC50 = 0.5 µM; Quadrupole1 = 16.927) > compound 15 (EC50 = 0.8 µM; Quadrupole1 = 22.7}. Therefore, dipole moment should be considered to design novel derivatives.

The descriptor nHsNH2 has very low contribution in this model (1). This descriptor is negatively correlated with the DENV inhibitory data i.e., increasing values of this parameter may diminish the activity of these series. The maximum number of atom-type H E-State -NH2 is observed in compound 13 and 19, and they are poorly active. This result is in close agreement with the biological activity where amino derivatives such as compound 13 (EC50 = 111.9 µM) and 19 (EC50 = 198.6 µM) possess very poor biological activity.

ADMET predictions

An ideal drug should have less toxicity and good pharmacokinetic property. The risk of elimination of a drug like molecule in clinical trials may be reduced by initial assessment of absorption, distribution, metabolism, excretion and toxicity (ADMET) property. In a recent communication, our investigated compound 2 (one of the lead molecules) was taken for the prediction of ADMET profiles by admetSAR tool25 and results are given in Table 4. Interestingly, compound 2 showed good absorption towards blood-brain barrier and epithelial cells of human intestine. Additionally, compound 2 is a substrate for CYP450 3A4 whereas non-substrate for CYP450 2C9. Under the toxicity category, compound 2 was non-carcinogenic and showed weak inhibitory action against human Ether-a-go-go-related gene.

Target implications of lycorine derivatives

Various non structural proteins of DENV are excellent drug targets. Lycorine derivatives target the C-terminal region (designated as 2K fragment) of non structural protein, NS4A and exert their anti-dengue action by suppressing the viral RNA replication27,28. Secondary structure prediction using Protter server28 showed that the protein has four trans-membrane helices (Fig 3a) where the 2K fragment is the last one. It has been reported that valine to methionine substitution in 2K fragment confers resistance to lycorine27. Our model of NS4A showed that the lycorine derivatives may possibly act at the membrane surface of the intra-cellular region. Thus, the balances of charge, bulkiness as identified in our modeling study are very important features in order to interact with the target NS4A as we explored some structural features responsible for the dengue inhibitory activity from this QSAR study. The important structural requirements of lycorine derivatives are shown in the Fig 3b.

Table 3—Definition of descriptors

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Type</th>
<th>Definition</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_N_O_7</td>
<td>Baumann alignment-independent (AI) descriptors</td>
<td>the count of nitrogen atoms separated from oxygen atoms by seven bond distance</td>
<td>Negative</td>
</tr>
<tr>
<td>GATS2c</td>
<td>Autocorrelation Descriptor</td>
<td>Geary autocorrelation - lag 2 / weighted by charges</td>
<td>Negative</td>
</tr>
<tr>
<td>ZMIC3</td>
<td>Information Content Descriptor</td>
<td>Z-modified information content index (neighborhood symmetry of 3-order)</td>
<td>Negative</td>
</tr>
<tr>
<td>nHsNH2</td>
<td>Electrotopological State Atom Type Descriptor</td>
<td>Count of atom-type H E-State -NH2</td>
<td>Negative</td>
</tr>
<tr>
<td>Quadrupole1</td>
<td>Dipole moment</td>
<td>Magnitude of first tensor of quadrupole moments.</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Table 4—The ADMET property of compound 2 (calculated by admetSAR tools)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Parameter</th>
<th>Compound 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blood-Brain Barrier</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Human Intestinal Absorption</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Caco-2 Permeability</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>P-glycoprotein</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>5</td>
<td>Renal Organic Cation Transporter</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>6</td>
<td>CYP450 2C9 Substrate</td>
<td>Non-substrate</td>
</tr>
<tr>
<td>7</td>
<td>CYP450 2D6 Substrate</td>
<td>Non-substrate</td>
</tr>
<tr>
<td>8</td>
<td>CYP450 3A4 Substrate</td>
<td>Substrate</td>
</tr>
<tr>
<td>9</td>
<td>CYP450 1A2 Inhibitor</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>10</td>
<td>CYP450 2C9 Inhibitor</td>
<td>Non-inhibitor</td>
</tr>
<tr>
<td>11</td>
<td>CYP450 2D6 Inhibitor</td>
<td>Inhibitor</td>
</tr>
<tr>
<td>12</td>
<td>CYP450 2C9 Inhibitor</td>
<td>Non-inhibitor</td>
</tr>
<tr>
<td>13</td>
<td>CYP450 3A4 Inhibitor</td>
<td>Non-inhibitor</td>
</tr>
<tr>
<td>14</td>
<td>Human Ether-a-go-go-Related Gene</td>
<td>Weak inhibitor</td>
</tr>
<tr>
<td>15</td>
<td>Carcinogens</td>
<td>Non-carcinogens</td>
</tr>
</tbody>
</table>
Conclusion

In the present communication, multiple molecular modelling tools were applied to explore the structural and physico-chemical requirements of lycorine derivatives for their DENV inhibitory activity. The QSAR model was statistically significant and well validated. It may guide to design new lycorine analogues as anti-dengue agents. The QSAR results revealed that the hydroxyl group or linear aliphatic at R$_1$ position is suitable for the DENV inhibitory activity, whereas bulky esterification, amino and ether substituent at the R$_2$ is not acceptable. One of the lead molecules (Compound 2) showed acceptable ADMET properties as predicted from the admetSAR tool. Therefore, the present study has a potential to accelerate dengue drug discovery efforts.

Acknowledgement

S.G. is thankful for the Start up grant from University Grants Commission, New Delhi (No.F.30-106/2015-BSR). The authors (M.A., S.A.A., and V.S.) are grateful to All India Council for Technical Education, New Delhi for awarding Post Graduate GPAT fellowship. The authors also thank the authority of the Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India for providing facility.

References

Fig. 3— a) Secondary structure of DENV NS4A (four trans-membrane helices where the 2K fragment is the last one) using Protter server28 and b) Structural requirements of lycorine derivatives having DENV inhibitory activity.
17 Chem 3D Pro Version 5.0 and Chem Draw Ultra Version 5.0 are software programs developed by Cambridge Soft Corporation, U. S. A.
22 STATISTICA version 7 is statistical software of Stat Soft Inc, Tulsa, USA.