Do you know the amazing story of 'a weird fish' from a remote coastal village of East Africa, for which a special flight was arranged and the head of a nation was requested for special delivery. Well, the story spans fourteen years – from 1938 to 1952.

But, first let's find out what was so special about that fish. The fish was a 'missing link' between Pisces and Amphibians. 'Missing link' is a living testimony of that geological time-period when a transition took place. There were many such transitional forms in the past. But in the course of millions of years many of those intermediate ones got extinct. Thus, we find some rare fossils in different parts of the world. And by radioisotope dating method we can calculate the age of those fossils. Somehow in the course of evolution a few intermediate forms survived.

Scientists believe that in the past fish-like ancestors gradually evolved into amphibians. Once, millions of years ago, the ancestors of amphibians (fossils of which formed around 400 million years ago or mya) were fishes. And the fish we are talking about was a 'missing link' between fishes and amphibians.

The story of the incredible fish begins in the year 1938. Marjorie Courtenay Latimer, a thirty-two-year-old lady was working as the curator of a tiny museum in the port town of East London, northeast of Cape Town, South Africa. She would befriend local fishermen for any unusual specimens she might want for
her museum. Every time, seamen fishing the nearby coastal waters of the Indian Ocean, coming back with their trawlers, would invariably call on her to look for any such unusual specimen. Captain Hendrick Goosen, a local seaman, had a trawler named ‘Nerine’. He would also catch fish in the coastal waters out there.

On 23 December 1938, Hendrick entered the port after a stint of trawling off the mouth of the nearby Chalumna River. Hendrick’s people called Marjorie to come and look over the catch. She was busy at that time carefully mounting a reptile specimen. After a while, she felt that as a courtesy call she should at least go there once to wish Nerine’s dockmen ‘a merry Christmas’.

So, she hired a taxi, reached there and wished them. And then, as she was about to leave, she noticed that a blue fin was protruding beneath a pile of rays and sharks, on the deck. Pushing the overlaying fishes aside she found there was a pretty big and beautiful fish, which she had never seen. It was five-feet long with pale mauve-blue plus unusual iridescent silver markings. Marjorie had no idea what the fish was, but determined it must be carried to the museum at once. At first the taxi driver refused to carry a foul-smelling five-foot-fish inside his cab, but later agreed to drive Marjorie with her specimen back to the East London museum.

Perusing a few reference books, which she had managed to procure from different libraries, Marjorie found a similar picture in a book. But to her utter dismay she read the text and found that such a resemblance would definitely lead her to a seemingly impossible conclusion because according to that book her specimen had visible marks quite similar to a prehistoric fish (living roughly around 400 million years ago or mya), especially in the structure of the lobed fins, lungs, the head and the tri-lobed shape of the tail.

She made a sketch, which she mailed along with a description to Professor J.L.B. Smith. Although teaching chemistry in Rhodes University, at Grahamstown, around fifty miles south of East London, Professor Smith, was a locally well-known person for his passion for fishes. Smith was out of station for Christmas holidays.

However, the director of the museum, in which Marjorie was working, was not much impressed with the find. He believed that the fish was nothing unusual but just a common grouper fish with probably some deformity.

But, on 3 January 1939, Marjorie heard back from Prof. Smith in a cablegram, stating: “MOST IMPORTANT PRESERVE SKELETON AND GILLS FISH DESCRIBED.”

In the process of preserving the fish with the uncanny tri-lobed tail by mounting it, the internal-organs had been by mistake discarded. Although a search was carried out for the interior-parts of the fish in the museum and even the town trash-bins as well, it proved fruitless. In addition, accidentally or some may say by ill-luck, the photographs taken were also spoiled.

Prof. Smith, a thin man of about five feet seven inches, sporting khaki bush

Scientists believe that in the past fish-like ancestors gradually evolved into amphibians. Once, millions of years ago, the ancestors of amphibians (fossils of which formed around 400 million years ago or mya) were fishes. And the fish we are talking about was a ‘missing link’ between fishes and amphibians.
A reporter of a local newspaper was allowed to take a single photograph of that mounted coelacanth. As the photo appeared, it went viral and soon got tremendous publicity around the world. Overnight Prof. Smith, Marjorie Courtenay Latimer, and the coelacanth-specimen became celebrities. Later, a public viewing only for one day was arranged. As many as 20,000 visitors showed up to have a glimpse of that wonder-creature.

shorts and sandals viewed the mounted specimen on 16 February 1939. He exclaimed while looking at the specimen, “I always knew somewhere a primitive fish of this nature would appear.” He was unfailingly confident that a ‘missing-link’ of that prehistoric transition-period (roughly 400 mya) was surviving somewhere. Smith identified the fish as a coelacanth. The fish would soon be called the “most important zoological find of the century”.

A reporter of a local newspaper was allowed to take a single photograph of that mounted coelacanth. As the photo appeared, it went viral and soon got tremendous publicity around the world. Overnight Prof. Smith, Marjorie Courtenay Latimer, and the coelacanth-specimen became celebrities. Later, a public viewing only for one day was arranged. As many as 20,000 visitors showed up to have a glimpse of that wonder-creature.

But the story of that ‘mysterious fish’ does not end there. With no internal organs left in that East London specimen, many questions remained unanswered. Prof. Smith was very eager to find a second specimen with internal organs intact. A reward notice with a picture of the first specimen was printed. Those pamphlets of ‘award-notices’ were pasted on many places among the East African coast as far as Kenya.

A few expeditions from Europe thoroughly searched the ocean depths looking for coelacanths. But Prof. Smith was convinced that the physiognomy of the fish and its blue colour suggested it would be a lower-reef-predator and not a true deep-water fish.

Captain Eric Hunt, a thirty-eight-year-old Briton, owned a vessel named ‘Nduwaro’ and used to trade among Zanzibar, Madagascar and Comoros, a group of small islands in the Mozambique Channel belonging to France at that time. He attended one of Smith’s lectures in Zanzibar and offered to post Smith’s reward notices among the Comoros islands, situated midway between Tanzania and Madagascar.

On 21 December 1952, exactly fourteen years after the discovery of the first living coelacanth, Captain Hunt was
On 6 May 1952, ten living specimens of an extraordinary mollusk were discovered while trawling off the Pacific coast of Costa Rica by a Danish deep-sea expedition named “Galathea”. They hauled these specimens to the ocean surface from a depth of 3590 meters. They were given the name *Neopolina galathea* and their discovery has been described as “the most dramatic one in the history of malacology” – the branch of zoology concerned with mollusks.

Tuatara of New Zealand is a lizard-like animal, the sole living member of Rhynchocephalia. Structurally, tuatara is not much different from its related forms, also assigned to the order Rhynchocephalia, which may have appeared during a time-period as early as the Late Triassic Epoch (about 227 to 206 mya), all of which are in fossil-form now. Certain features of tuatara include two pairs of well-developed limbs, a strong tail, a scaly crest, the scales, a bony arch low on the skull behind the eye, which are not found in lizards but in birds. Thus, it’s an intermediate-form. The tuatara has changed remarkably little in skeletal-features since the Jurassic Period (206 to 144 mya). Some fossil remains from the Pleistocene Epoch (1.8 million to 10,000 years ago) in New Zealand are structurally identical with the living tuatara.

And there was *Seymouria*, an extinct genus of advanced amphibians, fossils of which were found in Permian rocks (about 245 to 286 mya) in North America and were named so because the fossil deposits were near Seymour, Texas. *Seymouria* had many skeletal characteristics that are intermediate between those of amphibians and reptiles.

Here’s another interesting amphibian, the axolotl, notable for its permanent retention of larval features, such as external gills. It is found in lakes near Mexico City. It grows about 25 cm long and is dark brown with black speckling. The legs and feet are small but the tail is long. A fin extends from the back of the head to the tip of the tail and a lower fin extends from between the hind legs to the tip of the tail.

returning to the port of Mutsamudu on the Comorian island of Anjouan. He was approached by two fishermen carrying a hefty bundle. One person, named Ahamadi Abdallah, had caught by handline what the locals used to call a “mame” or “Gombessa”. Those two Comoran fishermen were accompanied by a curious schoolteacher, named Affane Mohamed, who had noticed that this was the same fish pictured on the reward notices.

Hunt and his crew salted the fish and then sailed with it to the harbor at Dzaoudzi, an islet off the Comoran island of Mayotte. There he bought formalin from the director of medical services as he was aware of the scientific importance of the internal organs. Hunt then injected the preservative into the specimen and thereafter sent a telegram to Prof. Smith in South Africa.

He awaited Smith’s response. But the French authorities at the nearby Pamanzi were not sure that the preserved creature with Hunt was indeed the fabled coelacanth. No message came back from Prof. Smith. Hunt again sent a frantic second cable to Prof. Smith, urging him to fly to the Comoros immediately. Prof. Smith found that the picture was indeed that of a coelacanth.

Immediately Prof. Smith, by now a much well-known fish-biologist the world-over, negotiated with the Prime Minister Mr. Malan of South Africa, for a plane to fly him to the Comoros. Finally, he reached the Comoros in the DC3 “Dakota” aircraft arranged by Mr Malan. It was a quick trip from the airstrip down to the harbor at Pamanzi where Mr. Hunt’s vessel, Nduwaro, was anchored.

People say that when Prof. Smith saw the dead fish he wept and whispered, “Yes, It’s indeed a coelacanth.” It was a moment of extreme joy for him. He now had his second specimen, with organs intact, a real wonder of biology.

It was a specimen of a true ‘missing-link’. All the above names were immortalised in the annals of Biological studies through the discovery of ‘coelacanth’, a ‘living fossil’ of the time-period dating back to around 400 mya. The scientific name given to coelacanth was *Latimeria chalumnae* to honour the astute lady, Marjorie Courtenay Latimer, and the Chalumna River of South Africa where the fish was first spotted by Ms Latimer.