Dietary restriction and triiodothyronine (T₃) regulation of malate-aspartate shuttle enzymes in the liver and kidney of mice

Danswrang Goyary and R Sharma*
Department of Biochemistry, North Eastern Hill University, Shillong 793 022, India

Received 11 April 2005; revised 7 October 2005

The activities of malate-aspartate shuttle enzymes viz., cytosolic and mitochondrial aspartate aminotransferase (c- and m-AsAT) and malate dehydrogenase (c- and m-MDH) were measured in liver and kidney of ad libitum (AL) and dietary-restricted (DR) mice and also on triiodothyronine (T₃) treatment. The results show that the activity (U/mg protein) of c-AsAT is increased significantly in liver and the activities of c-MDH and m-AsAT are increased significantly in kidney during DR. On T₃ treatment, the activities of both the isoenzymes (c- and m-) of MDH and AsAT are increased significantly in the liver of AL- and DR-fed mice. In the kidney, m-MDH showed no effect by T₃ treatment, however, c-MDH increased significantly in both AL- and DR-fed mice. In contrast, m-AsAT is increased significantly in the kidney in AL-fed mice, but was not affected in DR-fed animals. In vitro reconstitution of malate-aspartate shuttle showed a higher activity in the liver and kidney of DR-fed mice, as compared to AL-fed ones and also in the T₃-treated mice, compared to untreated ones. These findings suggest that malate-aspartate shuttle enzymes are differentially regulated during DR in mice, in order to adapt to the metabolic need of liver and kidney. T₃ potentially regulates the shuttle enzymes, albeit to a varying degree in the liver and kidney of AL- and DR-fed mice.

Keywords: Malate-aspartate shuttle enzymes, dietary restriction, triiodothyronine (T₃), liver, kidney, mice.

The malate-aspartate shuttle, comprising of mitochondrial and cytosolic aspartate aminotransferase (m- and c-AsAT; EC 2.6.1.1) and malate dehydrogenase (m- and c-MDH; EC 1.1.1.37) is a major pathway for the transport of reducing equivalents (-H or electrons) from cytosol to mitochondria in many animal tissues. The inner mitochondrial membrane is impermeable to NADH, which is formed by glycolysis in the cytoplasm during oxidation of glyceraldehyde-3-phosphate. NADH must be regenerated to NAD⁺ for glycolysis to operate. The shuttle involves an influx of malate and glutamate and efflux of aspartate and α-ketoglutarate from the mitochondria. Its functional significance is to unfold the degree of control points for glycolysis, gluconeogenesis and Krebs cycle. The compartmentalization of human c-MDH, together with its isoenzyme m-MDH plays an important role in the aerobic metabolism of the malate-aspartate shuttle and the citric acid cycle. Thyroid hormone regulates the malate/aspartate and α-glycerophosphate shuttle pathways in cardiac mitochondria, either directly by altering gene expression or indirectly by increasing myocardial workload.

The dietary restriction (DR) i.e., a reduction in caloric intake without malnutrition influences several physiological processes viz., immunological, protein and amino acid metabolism, and also neuroendocrinological system. It is an efficacious mode to increase longevity and delay the incidence and severity of various age-associated pathologies including cardiomyopathy, nephropathy and spontaneous and chemically- induced tumors. It may enhance longevity by potentiating the immune responses and lowering the oxidative stress/damage. It significantly increases gluconeogenesis that concurs with an increased rate of protein turnover during such intervention.

Earlier, influence of diet composition as a regulator of hepatic intermediary metabolism has been reported in rats. The rats fed with low-protein diet had an elevated plasma concentration of both total and free triiodothyronine (T₃), but the hepatic malate-aspartate shuttle activity was reduced. The energy-restricted diet, however, led to a reduction of T₃ in rats.
diet had differential effects on the level of plasma T₃. As the role of malate-aspartate shuttle is very critical in the oxidative metabolism, its possible alteration by dietary control and T₃ treatment may provide an insight into the regulation of this shuttle during such interventions. The present study was aimed at understanding the regulation of malate-aspartate shuttle in the liver and kidney of mice during long-term dietary restriction and T₃ treatment.

Materials and Methods

Animals and chemicals
Swiss albino (Balb/c strain) male mice of 8 weeks, maintained under normal laboratory conditions were fed with a standard pellet diet (Amrut Laboratory, Pune) and water ad libitum as per experimental schedule. Dietary-restricted mice were fed on alternate days for a period of 3 months. Animals were sacrificed at the end of a feeding day.

All the chemicals used were of analytical grade and the biochemicals were purchased from Sigma Chemical Co., USA.

T₃ treatment
The effect of T₃ was studied on the activities of shuttle enzymes in the liver and kidney of both AL- and DR-fed mice. Trial experiments were carried out to determine the time- and dose-response of the shuttle enzymes towards T₃. Maximum response of the enzymes was obtained with a dose of 200 µg/100 g body weight after 6 hr of T₃ injection. Both AL- and DR-fed mice were administered intraperitonially (i.p.) with T₃ dissolved in normal saline having 10% ethanol and sacrificed after 6 hr of the treatment.

Tissue preparation and assay of shuttle enzymes
Mice were sacrificed by cervical dislocation at a fixed time of the day (13:00 hr) and their liver and kidney were taken out, washed in chilled normal saline (0.9% NaCl) and blotted dry with filter paper. The 10% (w/v) homogenates of these tissues were prepared in ice-cold sucrose solution (0.25 M) using a homogenizer fitted with a Teflon pestle. The homogenates were centrifuged at 800 × g for 10 min at 0°C to sediment nuclei. The supernatant was further centrifuged at 14,000 × g for 30 min to sediment mitochondria. The mitochondrial pellet was washed twice, suspended in homogenization buffer (50 M potassium phosphate buffer, pH 7.5/0.25 M sucrose/0.5% Triton X-100, and for the assay of m-MDH in 50 M potassium phosphate buffer, pH 7.5 containing 0.25 M sucrose. Assays were performed within 3 hr of mitochondrial suspension.

The activities of c- and m-AsAT were measured as described, with some modifications. The isoenzymes c- and m-MDH were assayed spectrophotometrically as described, with certain modifications. The rate of oxidation of NADH was measured at 340 nm using a cuvette of 1.0 cm light path. The activities of both isoenzymes of MDH and AsAT were expressed as units (µmole NADH oxidized per min) per mg protein at 25°C. Protein content of the enzyme preparation was measured employing the Bradford method using bovine serum albumin as standard.

Reconstitution of malate-aspartate shuttle
For reconstitution of the malate-aspartate shuttle, tissues were homogenized in 4 volumes of homogenization buffer (50 M Tris-HCl, pH 7.4/0.25 M mannitol/1 mM EDTA/2 mM MgCl₂/30 M 2-mercaptoethanol) and centrifuged at 800 × g for 10 min at 0°C to sediment nuclei. The supernatant was further centrifuged at 14,000 × g for 30 min to sediment mitochondria. The mitochondrial pellet was washed twice, suspended in homogenization buffer and used in reconstitution studies. The post-mitochondrial supernatant was dialyzed for 18 hr at 4°C against 50 M Tris-HCl buffer, pH 7.4, containing 1 mM EDTA, 2 mM MgCl₂ and 30 M 2-mercaptoethanol. The dialyzed cytosol was centrifuged at 14,000 × g for 30 min to remove the traces of particulate materials and the resultant clear supernatant was used in reconstitution.

Reconstitution assay was done as described, with certain modifications of our own in the amount of protein taken and in the final assay volume. The reaction mixture (2.5 ml) contained the following: buffer incubation medium (300 M mannitol/10 M potassium phosphate buffer, pH 7.4/10 M Tris-HCl, pH 7.4/10 M KCl/5 M MgCl₂/2 M ADP/2 M aspartate), 2 mg cytosolic and 1 mg mitochondrial protein. After setting of the baseline to zero, 50 µl of 7 M NADH was added to the sample cuvette giving the absorbance of 0.73. The slow steady fall in absorbance was monitored for 2 min and then 50 µl of a solution of 0.2 M each of L-malate and glutamate.
was added to both cuvettes. The decrease in absorbance was followed up to 10 min.

Statistical analysis
Data obtained from different sets of experiments were analyzed using Student's t-test. The level of significance (P<0.05) between two sets of data was taken as significant.

Results and Discussion
The body weight of mice during alternate days of feeding for 3 months showed a significant decrease (-38%) in dietary restricted (DR) (21.3 g ± 1.7; n = 7), as compared to ad libitum (AL)-fed mice (34.14 g ± 2.4; n = 7) (Fig. 1). The weight of the liver and kidney also showed a significant decrease (-19%) during DR, as compared to AL-fed mice (data not shown). These observations confirmed that the mice were indeed subjected to a reduced food intake and are consistent with the earlier report. Our findings indicate that during DR, c-AsAT activity is significantly increased (26%) in the liver, as compared to AL-fed mice, but there was no change in other isoenzymes of the shuttle (Fig. 2a and b). c-AsAT is known to be involved in gluconeogenesis and its increase does signify more gluconeogenesis in liver during long-term DR. This is in agreement with an earlier report that the dietary calorie restriction in mice leads to an increase in mRNA and activity of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase involved in hepatic gluconeogenesis.

The c-MDH and m-AsAT are increased (24% and 31%, respectively) during DR in kidney (Fig. 2c and d). The increased c-MDH activity may favour more transfer of reducing equivalents to the mitochondria by greater production of malate, which is an intermediate substrate of the Krebs cycle. The increase in m-AsAT may lead to more production of aspartate that may help in generating cytosolic oxaloacetate to be utilized by c-MDH during such interventions.

It has been observed in an in vitro reconstituted malate-aspartate shuttle that the shuttle activity (as judged by oxidation of NADH) is relatively higher in both liver and kidney during DR (Fig. 3a and d). The observation of the present study is contrary to an earlier report, wherein feeding of low-protein and/or energy-restricted diet led to a reduction in hepatic malate-aspartate shuttle activity in rats. Such difference could be due to the dietary regimen followed as well as the animal species used in our experimentation.

Keeping in view the metabolic adjustments that take place during DR, the effect of thyroid hormone triiodothyronine (T₃) was studied on the shuttle enzymes in both AL- and DR-fed mice. In liver, the activity of c-MDH is increased in AL-T₃ (+74%) and DR-T₃ (+86%), as compared to their respective
controls in both AL- and DR-fed mice (Fig. 2a), however, there was no significant change in the magnitude of induction in either group. The activity of m-MDH also increased (+190% and 98%) by T3 treatment in the liver of both the groups, albeit the magnitude of induction was significantly greater in AL-T3, as compared to DR-T3 mice.

The activity of c- and m-AsAT in the liver is significantly increased (+162% and +164% and +175% and 201%, respectively) by T3 treatment in the liver of both AL- and DR-fed mice (Fig. 2b). There was no significant change in the magnitude of induction of c-AsAT activity in either group, however, the magnitude of m-AsAT induction was slightly higher (26%) in DR-T3 mice, as compared to AL-T3 mice. Thyroid hormone is known to increase the oxygen consumption of almost all the metabolically active tissues30. Thus, our findings have corroborated with the fact that during T3 treatment, the metabolic rate increases, leading to the increased activity of malate-aspartate shuttle enzymes to compensate the energy requirements during such intervention.

In kidney too, the activity of c-MDH is increased (+82% and +33%) by T3 treatment in both AL- and DR-fed mice, compared to control (Fig. 2c); the magnitude of induction is higher (49%) in AL-T3 than DR-T3. Similarly, the activity of c-AsAT is also increased (61% and 63%) significantly by T3 treatment in both the groups (Fig. 2d). However, m-MDH showed no significant change during T3 treatment in either group (Fig. 2c), while m-AsAT showed a significant increase (37%) in AL-T3, but no change in DR-T3 mice (Fig. 2d). Earlier, we reported that T3 significantly increases the activity of both c- and m-MDH in the liver and kidney of chicken5. In contrast, T3 did not induce c-AsAT isoenzyme in the liver and kidney of chicken, except m-AsAT in the liver5. These findings corroborate the fact that all four isoenzymes of shuttle are genetically-independent, differing from one another among various tissues of chicken5, and apparently show species-specificity in their regulation by hormones31.

In order to confirm the differential regulation of malate-aspartate shuttle enzymes by T3 in the liver and kidney, the shuttle activity was studied in a reconstituted system. Reconstitution of the malate-aspartate shuttle showed a higher activity in the liver and kidney of T3-treated animals, as compared to respective controls in both groups (Fig. 2b, e, e and f). Thus, the shuttle activity exhibited a similar pattern as

Fig. 3—Oxidation of NADH by reconstituted malate-aspartate shuttle in the liver (a,b,c) and kidney (d,e,f) of mice [(a,d), AL and DR mice; (b,e), AL and AL-treated with T3; (c,f), DR and DR-treated with T3. Equal amounts of dialyzed clear cytosol (2 mg protein) and mitochondria (1 mg protein) were used for the reconstitution assay. The lines depict the change in absorbance at 340 nm with the passage of time]
that of the expression of enzymatic activities in both the tissues. It reflects a greater transfer of reducing equivalents in both the groups of animals by T3 treatment. This is in agreement with the previous findings that the malate-aspartate shuttle activity is increased in hyperthyroidic rats and is tissue-specific.

From the above findings, it is clear that the malate-aspartate shuttle enzymes are differentially regulated during long-term dietary restriction in the liver and kidney of mice, depending on the metabolic need of the specific tissue. It is consistent with the earlier findings of differential expression of malate-aspartate shuttle in the liver and kidney of mice at different post-natal ages. As the T3 is a potent oxidative hormone, it increases the oxygen consumption in most of the tissues to facilitate energy demands and that may increase the shuttle activity to harness the reducing equivalents effectively. This could be accomplished by affecting the malate-aspartate shuttle enzymes during its treatment in both AL- and DR-fed mice. Thus, the regulation of malate-aspartate shuttle enzymes by T3 may facilitate increased metabolic demands of the liver and kidney to compensate the different tissues requirements during such interventions.

Acknowledgement

Financial support to DG as JRF from CSIR (F.No.9/347(151)/2K3-EMR-I is gratefully acknowledged. Authors thank the Department of Biochemistry, North Eastern Hill University, Shillong, for providing research facilities.

References
5 Lyngdoh H G & Sharma R (2001) Indian J Biochem Biophys 38, 170-175
8 Scholz T D, Ten Eyck C J & Schutte B C (2000) J Mol Cell Cardiol 32, 1-10
22 Dutta D & Sharma R (2004) Biogerontology 5, 177-184
23 Karmen A (1955) J Clin Invest 34, 131-133
28 Cohen A (1973) Horm Metab Res 5, 66-78