Comprehensive investigation of free radical quenching potential, total phenol, flavonoid and saponin content, and chemical profiles of twelve *Chlorophytum* Ker Gawl. species

Shweta S Shinde¹, Swapnil M Patil², Niraj R Rane², Avinash A Adsul³, Avinash R Gholve³, Pankaj K Pawar¹, Shrirang R Yadav¹ and Sanjay P Govindwar¹*

¹Department of Biochemistry, ²Department of Biotechnology, ³Department of Botany, Shivaji University, Kolhapur-416004, India

Received 16 July 2015; Revised 30 January 2016

India represents eighteen species of genus *Chlorophytum* Ker Gawl., which are cumulatively known and used as *Safed Musali*. Out of these, *Chlorophytum borivilianum* Santapau & R.R.Fern is extensively utilized by virtue of a wide array of bioactivities. In the present study, comparative analysis of twelve species of the genus *Chlorophytum* including *C. borivilianum* was done to find its alternative with respect to phytochemical content and antioxidant potential. Among all species analyzed, *C. amaniense* Engl. showed highest phenol (654.5 mg/g), flavonoid (191.1 mg/g) and saponin (7.42 %) contents. Highest DPPH free radical quenching activity was observed in *C. amaniense* Engl. (86.97 %) which was nearly 30 % more than that of *C. borivilianum*. HPTLC chemical fingerprint of all the *Chlorophytum* species was established showing a visible difference in the band pattern and intensities. HPTLC fingerprint of *C. amaniense* showed presence of maximum number of bands with high intensity. GC-MS analysis of all the extracts of twelve species revealed presence of 35 different molecules and/or fragments of molecules. Present study may be the first systematic and comparative evaluation of the genus *Chlorophytum*, indicates *C. amaniense* Engl. as an alternative to *C. borivilianum*.

Keywords: Antioxidant activity, *Chlorophytum* Ker Gawl., GC-MS, HPTLC, Saponins.

IPC code: Int. cl. (2015.01)– A61K 36/00, A61K 125/00, A61P 39/00

Introduction

Family Asparagaceae covers one of the major genera, *Chlorophytum* Ker Gawl., a member of subfamily Agavoideae¹. Genus *Chlorophytum* comprises of more than 215 species, 6 subspecies and 8 varieties which are distributed around the world². This genus is represented by 18 species in India; of which 16 species are found in Western Ghats alone³. Most of the members of genus *Chlorophytum* are known under general term *Safed Musali* and *Chlorophytum borivilianum* Santapau & R.R.Fern is the most popularly marketed medicinal herb under this common nomenclature since roots of this plant are regarded as a ‘Rasayana’ class of drug in *Ayurveda*⁴. More than 100 health related issues like rheumatoid arthritis, hemorrhagic shock, CVS disorders, cystic fibrosis, metabolic disorders, neurodegenerative diseases, gastrointestinal ulcerogenesis, etc. are managed or treated by using *Rasayana* drugs⁵⁻⁸. A systematic review of sixteen *Chlorophytum* species with special reference to their physiology, occurrence, chemical constitution, ethnobotanical usage and different biological activities in Ayurvedic perspectives has been reported earlier⁹.

A number of researchers have investigated various species of *Chlorophytum* with respect to their biological activities; however, species like *C. borivilianum* and *C. tuberosum* (Roxb.) Baker have been studied extensively while others were largely overlooked. In India, out of available eighteen *Chlorophytum* species, only *C. borivilianum* is commercially cultivated, which maybe because of sufficient knowledge generated in respect to its phytochemical content and medicinal activities. A wide array of actions of *C. borivilianum*, viz. aphrodisiac, immunomodulatory, anthelmintic, antioxidant, antiulcer, anti-stress, anti-tumor and antimutagenic activities are reported¹⁰⁻¹⁶.

The major consumers of root powder of *Safed Musali* (*Chlorophytum* species) are from USA, UK,
Australia, Japan, China and European Union countries. China and Japan are the top consumers having highest per capita consumption of herbal medicines. In the last decade, annual demand for *C. borivilianum* in India alone was 35000 tones as against supply of 5000 tones\(^1\). There is huge gap in supply because only *C. borivilianum* is in demand; which may be due to presence of detailed scientific studies on it. This situation arose because the need for finding an alternative to *C. borivilianum* and scientific comparison of rest of the species with respect to their phytochemical and pharmacological activities is largely overlooked. Reports, though scanty, suggest that all the species found in India demonstrate parallel bioactivities but due to lack of reliable scientific data, the demand is creating pressure on *C. borivilianum* only\(^1\). Hence, a systematic comparison of twelve *Chlorophytum* species with special reference to their antioxidant activity, total phenols, saponins and flavonoids content, HPTLC fingerprinting and GC-MS analysis was undertaken with the aim to find a suitable alternative to *C. borivilianum*.

Materials and Methods

Analytical grade organic solvents, chemicals, reference compounds, 2,2-diphenyl-1-picrylhydrazyl (DPPH) etc. were used and procured from Sigma-Aldrich (India). HPTLC silica gel 60 (without fluorescence) plates were purchased from Merck (Mumbai, India).

Plant material

Twelve *Chlorophytum* species (Plate 1) were collected during rainy seasons of 2009 to 2012 from different locations of Western Ghats and after

phenotypic characterization, identification was done with the help of expert taxonomist Prof. S R Yadav, Department of Botany, Shivaji University, Kolhapur. Specimens were maintained in the botanical garden of the Department of Botany, Shivaji University and voucher specimens were deposited in the herbarium at Shivaji University. Details of specimen collected, location of collection with GPS coordinates along with voucher specimen number are given in Table 1.

Preparation of plant extracts

Tubers were harvested from intact plant body in the month of November 2012, washed with tap water and dried in hot air oven at 40 °C for 2-3 days. For analysis of each plant, 5-7 similar size rhizomes were pooled together to avoid inter species difference in the chemical fingerprint. Dried tubers were homogenized in an electric blender to pass through 1 mm sieve and stored in airtight containers for further use. Powdered material (5 g) of each plant was defatted three times with 50 mL n-hexane and dried. Defatted powdered tubers were extracted with 50 mL of 60 % methanol in water. Extracts were filtered, concentrated and dried under vacuum. Dried extracts were dissolved in 30 mL water and extracted three times with equal volume of n-butanol. After partitioning, n-butanol extract was concentrated to dryness and the resultant residues were dissolved in 2 mL methanol and again precipitated using 40 mL diethyl ether. Precipitate so formed was collected by centrifugation (2000 rpm at 5 °C for 20 min) and re-dissolved in methanol to achieve stock concentration at 10 mg/mL for further analysis.

Total phenol content

The amount of total phenolics present in extracts of all *Chlorophytum* species was determined (as gallic acid equivalent μg/mg of extract) using the Folin-Ciocalteau reagent as described earlier. A gallic acid standard curve (R² = 0.9) was used to measure the phenolic content.

Total flavonoid content

The amount of total flavonoids (as Quercitin equivalent μg/mg of extract) present in extracts of all *Chlorophytum* species were determined using the aluminum chloride method as described earlier. A Quercitin standard curve (R² = 0.9) was used to measure the flavonoid content.

Table 1—List of Chlorophytum Ker Gawl. species, voucher information and GPS coordinates of collection location

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Chlorophytum species</th>
<th>Voucher number (Collection year)</th>
<th>Location (GPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C. nimmonii Dalzell</td>
<td>SUK 104 (2011)</td>
<td>Kondushi (16°12'36.3"N 74°00'01.3"E)</td>
</tr>
<tr>
<td>4.</td>
<td>C. tuberosum (Roxb.) Baker</td>
<td>SUK 101 (2011)</td>
<td>Ratnagiri (17°00'19.9"N 73°19'39.5"E)</td>
</tr>
<tr>
<td>5.</td>
<td>C. glaucoides Blatt.</td>
<td>SUK 111 (2012)</td>
<td>Tillari (17°56'23.7"N 73°37'57.9"E)</td>
</tr>
<tr>
<td>6.</td>
<td>C. belgaumense Chandore</td>
<td>Chandore 1113 (2010)</td>
<td>Khanapur belgaum (15°40'49.0"N 74°30'09.5"E)</td>
</tr>
<tr>
<td>8.</td>
<td>C. bharachae Ansari</td>
<td>ANC 700 (2009)</td>
<td>Adi Chikkodi (16°29'54.8"N 74°21'06.1"E)</td>
</tr>
<tr>
<td>11.</td>
<td>C. glaucum Dalzell</td>
<td>SUK 110 (2012)</td>
<td>Tillari (15°46'42.6"N 74°10'18.4"E)</td>
</tr>
</tbody>
</table>
collected Chlorophytum species was determined using aluminium chloride reagent. A Quercetin standard curve \((R^2 = 0.9)\) was used to measure the total flavonoid content

Total saponin content

Total Saponin content (as Quillaja saponin equivalent \(\mu g/mg\) of extract) in final saponin rich extracts was determined by the colorimetric method using vanillin sulphuric acid. In this, extract (10 \(\mu L\)) diluted with distilled water (90 \(\mu L\)) was mixed with vanillin (8 \% w/v in absolute ethanol) and sulphuric acid (72 \%). This mixture was incubated for 10 min at 60 °C and cooled in ice bath. Following vigorous shaking, absorbance was measured at 538 nm. Quillaja saponin was used as a reference standard and standard curve \((R^2 = 0.9)\) was used to measure the total saponin content.

DPPH free radical scavenging assay

Comparative antioxidant capacity of all the species of Chlorophytum collected was confirmed by the DPPH scavenging assay with slight modification. Different concentrations (10 to 100 \(\mu g/mL\)) of the extracts and ascorbic acid (standard) were thoroughly mixed with 5 mL of methanolic DPPH solution (33 mg/L) in test-tubes and the resulting solution was kept standing for 10 min at 37 °C before the optical density (OD) was measured at 517 nm. The measurement was repeated with three sets and an average of the readings was considered. The percentage radical scavenging activity was calculated using the following formula:

\[
\% \text{ scavenging [DPPH]} = \left(\frac{A_0 - A_1}{A_0} \right) \times 100
\]

where; \(A_0\) was the absorbance of the control and \(A_1\) is the absorbance in the presence of the samples.

HPTLC fingerprint analysis

Sample solutions (1 mg/mL) along with standard saponin (1 mg/mL) obtained from Sigma-Aldrich, USA were applied (band length 10 mm, 150 nL/s delivery speed, distance from the edge 10 mm) with the help of a Camag Linomat 5 applicator (CAMAG, Muttenz, Switzerland) on HPTLC silica gel 60 pre-coated plates 20 cm x 10 cm (Merck). Nitrogen was used as carrier gas for the sample application. A mobile phase comprising of chloroform: acetic acid : methanol: water (6.4:3.2:1.2:0.8) was used. Solvent system was added to twin trough chamber for saturation for about 20 min and then the plate was allowed to develop in an upward direction with migration distance of 90 mm. After development, the plates were derivatized by vanillin sulphuric acid reagent, anisaldehyde reagent and phosphomolybdic acid reagent separately. It was air-dried at room temperature and then heated at 100 °C for 15 min. Data was processed by win CATS 1.4.4.6337 (CAMAG) software.

GC-MS analysis

Gas chromatography coupled with mass spectrometry was used for identifying compounds present in the saponin-rich extracts of all Chlorophytum species. The analysis was executed with the help of Agilent Technologies 7890 instrument comprising of head space injector and compibal auto sampler coupled to MS and was operating in 70 eV Electron Impact mode. HP5 column (30.0 m x 0.25 mm x 0.25 \(\mu m\)) was used for separation of compounds. Helium was used as a carrier gas at a constant flow rate of 1.0 mL/min. The split ratio of 20:80 was used for injection of 1 \(\mu L\) of sample solution (1 mg/mL) at 280 °C. The temperature program of oven commenced at 80 °C, was held for 1 min and further increased to 280 °C (80 to 200 °C at 3 °C/min and 200 to 280 °C at 7 °C/min), injector temperature was kept at 280 °C. The qualitative analysis was done in full scan acquisition mode. Interpretation of mass spectrum from GC-MS was done using NIST/EPA/NIH Mass spectral database (NIST 11) with NIST MS search program v.2.0 g. The mass spectra of unknown compounds were compared with the spectrum of known molecules stored in NIST library.

Results and Discussion

The tubers of the twelve Chlorophytum species were processed and used for extraction and comparative radical scavenging, HPTLC fingerprint development and GC-MS profiling.

Phytochemical analysis (Total phenol, flavonoids and saponin contents)

Plant-derived compounds belonging to phenol group contribute largely in demonstrating free radical scavenging. Among all the species analyzed, C. amaniense gave highest total phenol contents (654.5 mg/g) followed by C. borivilianum (429.5 mg/g) whereas C. glaucoides Blatt. had least total phenol content (57.5 mg/g) of the total extract. The total phenol content of remaining species ranged in between 72.5 to 159.5 mg/g of total extract.
The phenol content of individual sample is shown in Table 2.

Total flavonoid contents of the twelve species reported as quercetin equivalent were found between 48 to 191.1 mg/g (Table 2). C. amaniense had the highest flavonoid content (191.1 mg/g), whereas C. nimmonii Dalzell had lowest flavonoid content (48.0 mg/g). Flavonoid content of most utilized and studied C. borivilianum was found to be 93.4 mg/g, which was far lower than C. amaniense even C. bharuchae Ansari was superior to it with respect to flavonoids content (154.3 mg/g).

A wide range of biological activities are attributed to saponin class of plant-derived secondary metabolites and comprehensive studies have been conducted by researchers to validate bioactivities of saponins.27 The presence of saponins, viz. stigmasterol and hecogenin is considered to be the molecules responsible for imparting aphrodisiac properties to members of the genus Chlorophytum, especially C. borivilianum.28,29 These qualities of Musali may be responsible for gaining it a very respectable place as Vajikaran Rasayana in the Indian System of medicine i.e. Ayurveda.30 Hence, the saponin content was evaluated in the twelve species which ranged from 1.89 to 7.42 % (w/w). The most investigated C. borivilianum ranked third with 4.85 % saponin content. C. amaniense had highest total saponin content (7.42 %) followed by C. laxum R. Br. (6.53 %). C. glaucoides and C. tuberosum (Roxb.) Baker showed comparable saponin content (4.61 and 4.76 %, respectively) to that of C. borivilianum. Other species, viz. C. gothanense Malpure & S. R. Yadav, C. comosum (Thunb) Jacq. and C. belgaumense showed 3.05, 3.20 and 3.78 % total saponins, respectively. Whereas, C. kolhapurense Sardesai, C. bharuchae, C. nimmonii and C. glaucum Dalzell showed less than 3 % saponin content i.e. 1.89, 2.01, 2.22 and 2.33 %, respectively (Table 2). The saponin content in various species of genus Chlorophytum with special reference to their types, content and biological activities have been reviewed with major focus on C. borivilianum by a number of researchers and are systematically compiled and documented.31 Variation in the saponin content (2-17 %) in C. borivilianum has been reported32, which may be due to change in the genotypes. Literature search revealed maximum number of reports on saponin content focused on C. borivilianum indicating that less attention has been paid towards the remaining species.

DPPH free radical scavenging activity

DPPH free radical scavenging potential was evaluated at various concentrations (10-100 μg/mL) of methanolic extracts. For the ease of comparison, antioxidant activity and radical scavenging activities at 100 μg/mL only are given here. A significant

<table>
<thead>
<tr>
<th>S. No</th>
<th>Name of Chlorophytum species</th>
<th>TPC (mg GAE/g extract)</th>
<th>TFC (mg quercetin/g extract)</th>
<th>Total saponin content (%)</th>
<th>% DPPH scavenging (at 100 µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C. nimmonii Dalzell</td>
<td>83.5</td>
<td>48.0</td>
<td>2.22</td>
<td>32.18</td>
<td></td>
</tr>
<tr>
<td>2. C. amaniense Engl.</td>
<td>654.5</td>
<td>191.1</td>
<td>7.42</td>
<td>86.97</td>
<td></td>
</tr>
<tr>
<td>3. C. laxum R. Br.</td>
<td>113.0</td>
<td>50.3</td>
<td>6.53</td>
<td>33.43</td>
<td></td>
</tr>
<tr>
<td>4. C. tuberosum (Roxb.) Baker</td>
<td>93.5</td>
<td>104.3</td>
<td>4.76</td>
<td>28.33</td>
<td></td>
</tr>
<tr>
<td>5. C. glaucoides Blatt.</td>
<td>57.5</td>
<td>74.6</td>
<td>4.61</td>
<td>29.75</td>
<td></td>
</tr>
<tr>
<td>6. C. belgaumense Chandore</td>
<td>139.5</td>
<td>74.6</td>
<td>3.78</td>
<td>33.96</td>
<td></td>
</tr>
<tr>
<td>7. C. comosum (Thunb) Jacq.</td>
<td>118.5</td>
<td>57.4</td>
<td>3.20</td>
<td>32.60</td>
<td></td>
</tr>
<tr>
<td>8. C. bharuchae Ansari</td>
<td>159.5</td>
<td>154.3</td>
<td>2.01</td>
<td>34.53</td>
<td></td>
</tr>
<tr>
<td>9. C. gothanense Malpure & S. R. Yadav</td>
<td>154.5</td>
<td>110.1</td>
<td>3.05</td>
<td>33.00</td>
<td></td>
</tr>
<tr>
<td>10. C. borivilanum Santapau and R. R. Fern</td>
<td>429.5</td>
<td>93.4</td>
<td>4.85</td>
<td>62.86</td>
<td></td>
</tr>
<tr>
<td>11. C. glaucum Dalzell</td>
<td>72.5</td>
<td>56.5</td>
<td>2.33</td>
<td>31.88</td>
<td></td>
</tr>
<tr>
<td>12. C. kolhapurense Sardesai</td>
<td>78.5</td>
<td>48.0</td>
<td>1.89</td>
<td>31.24</td>
<td></td>
</tr>
</tbody>
</table>
variation in all the species was observed ranging from 28.33 to 86.97% (Table 2). Highest DPPH free radical quenching activity was observed in C. amaniense (86.97%). C. borivilianum showed 62.86% antioxidant activity, which was around 30% lower than that of C. amaniense. The remaining species showed much lower antioxidant activities ranging from 29.75 to 34.53% at 100 μg/mL concentration. Saponins, phenolics, flavonoids, alkaloids, pigment molecules, etc. are the major groups of compounds which demonstrate antioxidant properties. A highly significant correlation between total phenols and radical scavenging potential has been reported in various studies in a number of plant species. Similarly a correlation between saponin content and antioxidant activity has been reported earlier. The present observations are in partial agreement with these reports regarding the total phenol and saponin content and its positive correlation with antioxidant activity. The present study indicates that total phenol plays a vital role in imparting radical scavenging activity and C. amaniense emerged as a superior alternative to C. borivilianum with respect to total phenols, flavonoids, saponins and antioxidant activity.

HPTLC profiling

In the present study, a chemical fingerprint of twelve different Chlorophytum species with respect to saponins was established. A solvent system comprising of chloroform, glacial acetic acid, methanol, water (6.4: 3.2: 1.2: 0.8) showed optimum resolution and better separation as compared to all other solvent systems tried. There was a need of derivatization with the help of chemical reagent for visualization of saponins since they do not show fluorescence quenching in UV range (254 and 366 nm). Saponins were derivatized using three different reagents, viz. anisaldehyde, phosphomolybdic acid and vanillin-sulphuric acid. As far as the stability of colour developed on chromatogram was concerned, vanillin-sulphuric acid reagent gave better colour stability of bands than that of anisaldehyde reagent. Use of phosphomolybdic acid could not display colour variation in chromatogram as in vanillin-sulphuric acid and anisaldehyde reagent. Display of various characteristic colour bands of varying intensities were observed in a qualitatively developed HPTLC plate (Plate 2). Distinct bands of blue, violet, grey, reddish brown and brown colours representing different saponins could be observed and are in agreement with earlier reports. Each track corresponding to individual Chlorophytum species was scanned at 540 nm as a function of Rf value; each peak at different Rf value represented individual compound. Number of bands in different species of Chlorophytum ranged in between 7 to 12. The chromatogram revealed that most of the molecules are common in all the species though there are variations in the area under peak of the respective band. C. amaniense showed maximum 12 distinct peaks where as other species showed merging of major bands of lower Rf values suggesting presence of more than one molecule having similarity in structures. The peak pattern of lower Rf value molecules in C. borivilianum, C. belgaumense, C. laxum, C. gothansense, C. nimmonii, C. glaucum, C. kholapurense, C. glaucoides and C. tuberosum was almost similar with slight difference in the concentrations of corresponding molecules as observed by variation in the area under peak. A track wise comparative HPTLC profile scanned at 540 nm after application of equal concentration of extracts of all the Chlorophytum species studied is presented in Plate 3.

GC-MS analysis

Extracts of the twelve Chlorophytum species under study were subjected to GC for separation and further to MS analysis of separated molecules.
Interpretation of mass spectrum from GC-MS was done using NIST/EPA/NIH mass spectral database (NIST 11) with NIST MS search program v.2.0 g. The mass spectra of unknown compounds were compared with the spectrum of known molecules stored in NIST library. An array of molecules was observed to be present in the extracts subjected to GC-MS analysis. Cumulatively, peaks with retention times (Rt) ranging from 3.1 to 32.2 min were detected. NIST 11 database could detect nearly 35 molecules, out of which nearly 40 % compounds appeared to be fragments of some other molecules which were not available in the database. A comprehensive list of all compounds and their presence or absence in the respective Chlorophytum species is presented in Table 3.

World Health Organization estimates that nearly 80 % world population still relies on plant based medicines to cater its primary health care needs. In developed countries, phyto-pharmaceuticals are regarded as complementary or alternative medicine and their popularity is observed to be increasing. United State Food Drug Administration regulates such botanicals as food rather than drugs. In the last twenty years, pharmaceutical sector all over the world has invested a lot of money to conduct research on pharmacological, clinical and phytochemical analysis in anticipation of developing more potent plant drugs. As far as genus Chlorophytum is concerned, its members harbor a wide array of secondary metabolites, saponins being the dominant with varying concentrations. C. borivilianum is considered to be economically important probably due to higher content of saponins and is utilized to prepare a variety of drug formulations like tonic, massage oil, capsule, powder, etc. by different phytopharmaceutical companies. More than 95 % of the available quantum of C. borivilianum is collected from the forests. Continuous increase in the magnitude of medicinal plant market indicates a very high economic importance of Safed Musali at international level.
Table 3—Compound and/or fragments of molecules detected in extracts of twelve *Chlorophytum* Ker Gawl. species by GC-MS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Compound name</th>
<th>(R_t) (min)</th>
<th>Plant species 1</th>
<th>Plant species 2</th>
<th>Plant species 3</th>
<th>Plant species 4</th>
<th>Plant species 5</th>
<th>Plant species 6</th>
<th>Plant species 7</th>
<th>Plant species 8</th>
<th>Plant species 9</th>
<th>Plant species 10</th>
<th>Plant species 11</th>
<th>Plant species 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Formic acid, ethenyl ester</td>
<td>3.1</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>1H-Tetrazole, 1-methyl-</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Glycerin</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>2-Cyclopenten-1-one, 2-hydroxy-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Benzenecetaldehyde</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>1-amino-2,6-dimethylpiperidine</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Guanethidine</td>
<td>4.9</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Cyclopropylcarbinol</td>
<td>5.5</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl-</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>2-Furancarboxaldehyde, 5-hydroxymethyl-</td>
<td>7.4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>Hydroquinone</td>
<td>7.9</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>DL-Proline, 5-oxo-, methyl ester</td>
<td>9.6</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13.</td>
<td>4-Hydroxy-2-methylacetophenone</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td>Benzene, 1-chloro-4-methoxy-</td>
<td>10.1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>L-phenylalanine, methyl ester</td>
<td>10.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>1,3-Propanediol,2-(hydroxymethyl)-2-nitro</td>
<td>10.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>Ethanone,1-(4-hydroxy-3-methoxyphenyl)-</td>
<td>11.5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18.</td>
<td>Methyl-α-d-ribofuranoside</td>
<td>11.6</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>19.</td>
<td>Phenol, 2,4-bis(1,1-dimethylthyl)-</td>
<td>11.8</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20.</td>
<td>Adipic acid, diphenyl ester</td>
<td>11.9</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>21.</td>
<td>Benzoic acid, 4-ethoxy-, ethyl ester</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22.</td>
<td>2-Butenedioic acid (Z)-, dibutyl ester</td>
<td>12.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23.</td>
<td>Lactose</td>
<td>12.4</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>24.</td>
<td>3’,5’-Dimethoxycetophenone</td>
<td>12.6</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>25.</td>
<td>Benzeneacetic acid, 4-hydroxy-3-methoxy-</td>
<td>13.9</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26.</td>
<td>Tertadonium bromide</td>
<td>14.3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27.</td>
<td>1-Tetradecanamine, N,N-dimethyl-</td>
<td>14.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28.</td>
<td>Phenol,4-(3-hydroxy-1-propenyl)-2-methoxy-</td>
<td>15.1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29.</td>
<td>1-Nonanamine, N,N-dimethyl-</td>
<td>17.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(contd.)
Conclusion

Twelve Chlorophytum species were collected from different locations of Western Ghats and analyzed comparatively for total saponin, flavonoid and phenol contents. In vitro comparative antioxidant potential of all the species was also determined along with chemical fingerprinting with HPTLC and GC-MS. Of the twelve species analyzed, C. amaniense Engl. showed highest phenol, flavonoid and saponin contents. It also demonstrated 30% higher DPPH free radical scavenging activity than that of C. borivilianum. HPTLC chemical fingerprint of all the studied Chlorophytum species showed a significant variation in saponin and flavonoid content. HPTLC fingerprint of C. amaniense showed presence of maximum number of bands with high intensity. In present study, better performance of C. amaniense was found over C. borivilianum in terms of total saponin, flavonoid, phenol content and in vitro antioxidant activity. Considering the vulnerability of C. borivilianum, C. amaniense can serve as a potential alternative for this valuable plant.

Acknowledgement

Author Shweta S Shinde is thankful to DBT-SUK IPLS program for financial support in the form of fellowship (BT/PR7498/BCE/8/942/2012). Indian Institute of Technology, SAIF facility, Powai, Mumbai is also acknowledged for carrying out the GC-MS analysis. Authors are also thankful to Shivaji University, Kolhapur for providing necessary infrastructure.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Compound name</th>
<th>R<sub>t</sub> (min)</th>
<th>Plant species</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.</td>
<td>1-Naphthalenecaboxaldehyde, 2-methoxy-</td>
<td>19.7</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>31.</td>
<td>9,12-Octadecadienoic acid, methyl ester, (E, E)-</td>
<td>20.9</td>
<td>- - - - - - - - - - - -</td>
</tr>
<tr>
<td>32.</td>
<td>Dibutyl phthalate</td>
<td>22.3</td>
<td>- - - - - - + + - - - -</td>
</tr>
<tr>
<td>33.</td>
<td>Hexadecanoic acid, 2,3-dihydroxypropyl ester</td>
<td>26.7</td>
<td>- - + - - - - - - - -</td>
</tr>
<tr>
<td>34.</td>
<td>1,2-benzenedicarboxylic acid, diisooctyl ester</td>
<td>27.3</td>
<td>- + - - - - - - - - -</td>
</tr>
<tr>
<td>35.</td>
<td>Squalene</td>
<td>32.2</td>
<td>+ - - - - - - - - - -</td>
</tr>
</tbody>
</table>

References