Short Communication

Media resources collection organization and management– An Overview
(CEC Media Library-As an example)

Jayaja Krishnan
Media Tape Librarian, Consortium for Educational Communication (CEC), New Delhi.

Provides an overview of the organization and management of Media Resources Collection in Media Libraries with example of how it is organized at Media Library of the Consortium for Educational Communication (CEC), New Delhi. It informs the readers how the applications and convergence of Information Communication Technologies (ICT) helps in distribution and dissemination of knowledge resources in a converged environment. The advancements and developments in ICT have made possible information access and retrieval much faster in present times.

Introduction

Major advances and tremendous leap towards progress in the field of computer technology, mass media and communication has provided opportunities for the application and use of these technologies for information management purposes.

The fast growth of the Internet and its accompanying business through the use and application of Information Communication Technologies (ICT) is due to the rapid advancement and changes that have taken place in access to technology, processing power, storage capacity, and bandwidth. The dynamic changes in information technology affect information infrastructures at all levels. Nowadays, sources of information are increasingly made available only in the electronic form.

The whole world has become one global village due to the convergence of these technologies. It has made possible information access and retrieval of the information much faster in present times.

This communication deals with the various aspects of collection, organization and management of Media Resources.

Media resources

Media library can be described as a library having collection of audio, video and multimedia resources. Initially these media resources were typically available on tapes, films, spools, etc. but with IT revolution, resources are available on digital media such as CD’s, DVD’s and video servers.

Types of storage for media resources

These resources can be stored on various audio, video media like audio cassettes, spools tapes, 16mm/35mm films, VHS, U-matic tapes, beta tapes, Ultra tapes, etc. and also on digital media such as CD’s, DVD’s, etc. The tapes, CD’s and DVD’s can be of different durations. Present day storage of media resources is on archival servers.

Preservation and archiving of media resources

The master tapes are to be preserved in a dust free and air conditioned environment. The temperature of about 15-22°C should be maintained. The relative humidity factor should be around 40 - 60% RH. The tapes should be kept suitably wound and store the encased tapes vertically upright when not in use. Fasten open-reel tape ends securely before storing. Fix appropriate labels to provided areas. Rewind or forward tapes periodically. Keep tapes away from stray magnetic fields. The tapes are to be stored in dry environment. It is advisable to follow the above mentioned for long term storage of recorded tapes. Nowadays there are archival servers to store and preserve the media resources.

Management of media resources

The collection has to be arranged subject wise or tape number wise. This is for convenience of access and
retrieval. Sometimes it is arranged according to the needs and use of the media resources within the organization.

Classification of media resources

Once the media resources are organized then the collection has to be classified. For classifying the media resources only the main subject class and secondary class numbers are applied. The library can use the classification schemes adopted by the respective library. Classifying of the contents elevates and enhances their value greatly and helps in subject searches.

Cataloguing of media resources

For cataloguing of media resources, title of the program, subject, duration, producer, tape number, year of production and brief synopses of the programme are some of the minimum fields which are given. The same inputs are used for creation of bibliographical data in the database.

Creation of database for media resources

An Online Public Access Catalog system (OPAC) has to be designed for storage and retrieval of data on audio-visual materials and the OPAC is the basic electronic access point to audio-visual materials to find out what is available with the library. The database is classified subject wise by using the Dewey Decimal Classification scheme used internationally the world over for classifying the “Universe of Knowledge”.

Keywords, free terms and controlled and faceted vocabulary are used in accessing and retrieving information from the database. The main subjects and secondary subjects help in cross references. “See and see also” terms are used for references and also for linking and retrieving the information using Boolean operators for searches. These methodologies help the search engines and the browsers used in the software to retrieve the data.

The user can access the Video OPAC for getting information on the multimedia resources through one’s website. One can use descriptors for retrieving the data by title, master tape number, subjects, synopsis etc. The catalogue can be seen on the Web OPAC by clicking at the library button then going to the library search.

Metadata for media resources

The common belief about metadata is that it is just for adding keywords is not true. The metadata gains greater importance because of the development of content management software for managing and accessing the content. These days people are using the terms metadata and meta tags for organizing and managing the information.

There are four broad categories of metadata. Structured metadata describes the information architecture of the document. The metadata elements in this case for video programmes include title, duration, tape number, year of production, synopses, production centre, images etc. Content metadata identifies documents that are relevant to the subject information. Descriptive metadata helps in identifying the type of document like images so the search is possible and is limited to web content, streaming video etc. Administrative metadata relates to the administrative aspects of the document like the person and department owning the document, relevancy of the document etc.

The documents have to be tagged and stored properly in the database so that the search engines can understand the contents better and provide accurate searches with precision. Metadata can be used to encode information. Metadata helps in sharing of information and knowledge resources that could be accessed by users.

Digitization of media resources

Video streaming and audio compression software are already inbuilt in the server software on the Windows environment. The database is designed as per user needs and requirements and as library has a wealth of information resources. Streaming media refers to the synchronized delivery of audio and video content on the Internet.

With the advances in streaming digital technologies, Internet, bandwidth speeds, reliability and development in digital audio and video encoding, it is possible to open the resources locked within the audio video files and make it accessible via streaming media and give a synchronized delivery of audio and video encoded content on the Internet.

This can be received on to a user’s desktop as an uninterrupted real time stream. The distribution for the stream from a given source like video tape is broadcast by server application that acts as an interface for users requesting access to the streamed video and information...
An ideal film/movie database on the Web should be constructed with full interactive multimedia components and capabilities which provide an end user with real time control of time based media in a stand alone or networked setting.

Bibliographic information of media resources

The bibliographic information in multimedia formats, for example audio images and data are accessed by utilizing the web based client server architecture. Many web browsers are designed for discovery and retrieval and prove to be a powerful and useful tool for bringing multimedia networked information to users. It is challenging to change the text only database of a library into multimedia networked information for access by any user. Comprehensive textual annotations provide methods for video search and retrieval. Text based search techniques are the most direct and accurate and efficient methods for finding unconstrained images and videos. Visual content complements text based approaches.

CEC Library- Digital Multimedia Resources – As an example

CEC Library has the entire multimedia resources catalogue available on the Web OPAC. CEC library has few programmes streamed and put up for Video – On – Demand. The encoding and digitization of video is time consuming and more labour intensive. CEC library in its endeavor and goal to secure, preserve and archive knowledge has created Learning Object Repositories (LOR’s) and Reusable Learning Objects (RLO’s) from its existing multimedia collections. CEC website allows data to be disseminated without a long winded publication process. CEC website and library server helps in distribution and dissemination of knowledge resources in a converged environment. The links are as below:

1. CEC Website www.cec-ugc.org
2. LOR (Learning Objects Repository) www.cec-lor.edu.in
3. E-content www.cec-econtent.edu.in
4. VOD (Video on Demand) www.cec-vod.edu.in

Software for media resources

Custom made software could be developed to suit individual organisational needs and for use in specialised Libraries dealing in one area or specialised field. Designing of the database should be suited according to the needs of the organisation. Interfaces that are innovative and which are interoperable on the web based client server architecture can be adopted. The programmer should think of the right interfaces and search engines that need to be adopted. Platforms to be used are Windows, Unix or Linux. Open Source Software like Greenstone Digital Library Software and D-Space may be adopted with slight modifications to suit the collection of media resources.

Conclusion

This article gives a brief overview of the organization and management of the media resources. In these demanding times and environment, a new breed of managers and technologists who understand information communication technologies will be greatly required. All library professionals will have to gear up and keep pace with the changes in information communication technology. As library professionals we should adopt the modern technological methods of handling information for easy information access and retrieval. People should have access to information any time and anywhere and as librarians and library professionals we should help in facilitating this change.