Synthesis of symmetrically / unsymmetrically substituted bisbenzimidazolesulphides of potential pharmacological interest

S Srinivas Rao*, Putluru Mahesh, Ch Venkata Ramana Reddy & P K Dubey

Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering, Kukatpally, Hyderabad 500 085, India
E-mail: seenu604@gmail.com

Received 17 January 2014; accepted (revised) 26 February 2015

Results and Discussion

2-(1-Chloroethyl)-1H-benzimidazole 1a (i.e., 1, R=H) on condensation with 2-mercaptobenzimidazole 2a in methanol using triethylamine (TEA) as a base under reflux for 3 hr gave the previously reported7 2-((1-(1H-benzimidazol-2-yl)ethyl)thio)-1H-benzimidazole 3a. Compound 3a on methylation using two equivalents of dimethylsulphate with dimethylformamide (DMF) as solvent and K2CO3 as a base using tetrabutylammonium bromide (TBAB) as PTC at RT for 3 hr gave N,N′-dimethylbisbenzimidazole sulphide 3b. Using this strategy, the reactions of 3a was also performed with two equivalents each of diethyl sulphate, benzyl chloride and n-butyl bromide to obtain N,N′-diethylbisbenzimidazolesulphide 3c, N,N′-dibenzylbisbenzimidazolesulphide 3d and N,N′-dibutylbisbenzimidazolesulphide 3e respectively. The structures of 3b-e have been assigned on the basis of their spectral and analytical data (please see Experimental Section for details).

Compound 3b (i.e., 3, R=R′=methyl) was also synthesized by condensing N-methyl-2-chloromethylbenzimidazole 1b (i.e., 1, R=CH3) with 2-(1-chloroethyl)-1-methylbenzimidazole 2b in methanol using TEA as a base under refluxing conditions for 3 hr (Scheme I). Similarly, 3c, 3d and 3e were also synthesized by the condensation of N-ethyl-2-mercaptobenzimidazole 2c, N-benzyl-2-mercaptobenzimidazole 2d and N-n-butyl-2-mercapto benzimidazole 2e with the corresponding 2-(1-chloroethyl)-1-ethylbenzimidazole 1c, 2-(1-chloroethyl)-1-benzylbenzimidazole 1d and 2-(1-chloroethyl)-1-n-butylbenzimidazole 1e respectively. The products obtained above have been found to be identical with reported sample with respect to m.p. and TLC (Table I).

Using this protocol, N,N′-unsymmetrically disubstituted derivatives 3f-q were prepared as follows: Condensation of 2-(1-chloroethyl)-1-methylbenzimidazole 1b with 2-mercaptobenzimidazole 2a gave 3r. Compound 3r when subjected to ethylation under PTC conditions gave 3f. Similarly, 3g was synthesized by condensing 2-(1-chloroethyl)-1-methylbenzimidazole 1b with 2-mercaptobenzimidazole 2a to
of IR, of other compounds could also be prepared. The structures of 3a-e were characterized by their physical data, such as melting points and IR spectra.

Experimental Section

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. Thin-layer chromatography (TLC) were performed on pre-coated silica gel glass plates GF-254. IR spectra were recorded on a Jasco FT-IR 5300 spectrometer.

Preparation of 3b-e from 3a

A mixture of 3a (0.14 g, 5 mM), K$_2$CO$_3$ (1.3 g, 10 mM), TBAB (10 mg), DMF (20 mL) and two equivalents of appropriate alkylating agent were stirred at RT for 3 hr. At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed with water (2×10 mL) and dried to obtain crude 3b-e which on recrystallization from a suitable solvent gave pure 3b-e.

Table I — Physical characterization data of the synthesized compounds 3a-e

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Substrate</th>
<th>Alkylating agent</th>
<th>Product</th>
<th>Yield (%)</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>–</td>
<td>3a</td>
<td>86</td>
<td>294</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>DMS</td>
<td>3b</td>
<td>81</td>
<td>281</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>DES</td>
<td>3d</td>
<td>84</td>
<td>276</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>PhCH$_3$-Cl</td>
<td>3e</td>
<td>77</td>
<td>287</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>n-BuBr</td>
<td>3e</td>
<td>69</td>
<td>266</td>
</tr>
</tbody>
</table>

Preparation of 3f-q from 3a (R=R'=H)

A mixture of 3a (0.14 g, 5 mM), K$_2$CO$_3$ (1.3 g, 10 mM), TBAB (10 mg), DMF (20 mL) and two equivalents of appropriate alkylating agent were stirred at RT for 3 hr. At the end of this period, the reaction mixture was poured into ice-cold water. The separated solid was filtered, washed with water (2×10 mL) and dried to obtain crude 3f-q which on recrystallization from a suitable solvent gave pure 3f-q.

Table II — Physical characterization data of the synthesized compounds 3f-q

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Starting materials used</th>
<th>Product</th>
<th>Yield (%)</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1b</td>
<td>2e</td>
<td>75</td>
<td>>300</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>2d</td>
<td>68</td>
<td>291</td>
</tr>
<tr>
<td>3</td>
<td>1b</td>
<td>2e</td>
<td>66</td>
<td>286</td>
</tr>
<tr>
<td>4</td>
<td>1c</td>
<td>2b</td>
<td>77</td>
<td>>300</td>
</tr>
<tr>
<td>5</td>
<td>1c</td>
<td>2d</td>
<td>64</td>
<td>277</td>
</tr>
<tr>
<td>6</td>
<td>1c</td>
<td>2e</td>
<td>66</td>
<td>284</td>
</tr>
<tr>
<td>7</td>
<td>2d</td>
<td>1b</td>
<td>60</td>
<td>256</td>
</tr>
<tr>
<td>8</td>
<td>2d</td>
<td>1c</td>
<td>66</td>
<td>>300</td>
</tr>
<tr>
<td>9</td>
<td>2d</td>
<td>2e</td>
<td>53</td>
<td>289</td>
</tr>
<tr>
<td>10</td>
<td>2e</td>
<td>1b</td>
<td>49</td>
<td>265</td>
</tr>
<tr>
<td>11</td>
<td>2e</td>
<td>1c</td>
<td>59</td>
<td>>300</td>
</tr>
<tr>
<td>12</td>
<td>2e</td>
<td>2d</td>
<td>68</td>
<td>269</td>
</tr>
</tbody>
</table>

Thus, 3d, 3e, 3f-q (Table II) have been established on the basis of IR, 1H NMR and LC-MS (Q+1) spectral data.
1-Benzyl-2-((1-(1-benzyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole, 3d: IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 1.72 (d, 3H,-CH(CH₃)₂), 3.89 (m, 1H,-CH(CH₃)₂), 4.69 (s, 2H,-NCH₂ of benzyl of –CH₂CH₃Bz), 5.25 (s, 2H, NCH₂ of benzyl of-SBz), 7.27-8.36 (complex, m, 18H, 10 aromatic benzyl + 8H aryl protons); MS (Cl): m/z 475 [M⁺+1].

1-(n-Butyl)-2-((1-(n-butyl)-1H-benzimidazol-2-yl)ethyl)thio)-1H-benzimidazole, 3e: IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 1.26 (t, 2H,-NCH₂ of butyl of –CH₂CH₃Bz), 1.65 (m, 2H,-NCH₂CH₂CH₃ of butyl of –CH₂CH₃Bz), 1.70 (d, 3H,-CH(CH₃)₂), 2.54 (m, 2H,-NCH₂CH₂CH₃ of butyl of –CH₂CH₃Bz), 3.72 (t, 3H,-NCH₂CH₂CH₃ of butyl of –CH₂CH₃Bz), 1.45 (t, 2H,-NCH₂ of butyl of SBz), 1.79 (m, 2H,-NCH₂CH₂CH₃ of butyl of –SBz), 2.68 (m, 2H,-NCH₂CH₂CH₃ of butyl of –SBz), 3.85 (t, 3H,-NCH₂CH₂CH₃ of butyl of –SBz), 6.68-7.68 (complex, m, 8H, aryl protons), 3.92 (m, 1H,-CH(CH₃)₂); MS (Cl): m/z 407 [M⁺+1].

Alternative procedure for preparation of 3b-e
A mixture of 1 (R=alkyl) (0.87 g, 5 mM), 2 (R²=alkyl) (0.95 g, 5 mM), methanol (20 mL) and TEA (0.46 mL) was refluxed for 3 hr. At the end of this period, the reaction mixture was poured into iced-cold water. The separated solid was filtered, washed and dried to obtain crude 3b-e which on recrystallization from a suitable solvent gave pure 3b-e.

General Procedure for the preparation of 3f-q from 3 (R=H, R¹=alkyl) / 3 (R=alkyl, R²=H)
A mixture of 3 (R=H, R¹=alkyl) / 3 (R=alkyl, R²=H) (0.14 g, 5 mM), KO₂CO₃ (1.6 g, 10 mM), TBAB (10 mg), DMF (20 mL) and alkylating agent (5 mM) was stirred at RT for 3 hr. At the end of this period, the reaction mixture was poured into iced-cold water. The separated solid was filtered, washed with water and dried to obtain crude 3f-q which on recrystallization from ethyl acetate gave pure 3f-q.

1-Ethyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole, 3f: IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 3.65 (s, 3H,-NCH₃ of-CH₂CH₃Bz), 1.68 (m, 2H,-NCH₂ of ethyl of –SBz), 3.94 (t, 3H,-CH₃ of ethyl of –SBz), 6.65-7.64 (complex, m, 8H, aryl protons), 1.74 (d, 3H,-CH(CH₃)₂), 3.91 (m, 1H,-CH(CH₃)₂); MS (Cl): m/z 337 [M⁺+1].

1-Benzyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole 3g: IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 3.70 (s, 3H,-NCH₃ of-CH₂CH₃Bz), 4.62 (s, 2H,-NCH₂ of benzyl of SBz), 7.22-8.58 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.65 (d, 3H,-CH(CH₃)₂), 3.85 (m, 1H,-CH(CH₃)₂); MS (Cl): m/z 399 [M⁺+H⁺].

1-Butyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole 3h: IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 3.56 (s, 3H,-NCH₃ of-CH₂CH₃Bz), 1.32 (t, 2H,-NCH₂ of butyl of –SBz), 1.65 (m, 2H,-NCH₂ of butyl of –SBz), 2.54 (m, 2H,-NCH₂CH₂CH₃ of butyl of –SBz), 3.68 (t, 3H,-NCH₂CH₂CH₃ of butyl of –SBz), 6.69-7.68 (complex, m, 8H, aryl protons), 1.70 (d, 3H,-CH(CH₃)₂), 3.88 (q, 1H,-CH(CH₃)₂); MS (Cl): m/z 365 [M⁺+1].

1-Ethyl-2-((1-(1-methyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole 3i: No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 1.54 (m, 2H,-NCH₂ of ethyl of-CH₂CH₃Bz), 3.76 (t, 3H,-CH₃ of ethyl of-CH₂CH₃Bz), 3.53 (s, 3H,-NCH₃ of-SBz), 6.65-7.58 (complex, m, 8H, aryl protons), 1.69 (d, 3H,-CH(CH₃)₂), 3.78 (q, 1H,-CH(CH₃)₂); MS (Cl): m/z 413 [M⁺+1].

1-Benzyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole 3j: No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 1.50 (m, 2H,-NCH₂ of ethyl of-CH₂CH₃Bz), 3.80 (t, 3H,-CH₃ of ethyl of-CH₂CH₃Bz), 4.65 (s, 2H,-NCH₂ of benzyl of SBz), 7.22-8.19 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.79 (d, 3H,-CH(CH₃)₂), 3.85 (q, 1H,-CH(CH₃)₂); MS (Cl): m/z 413 [M⁺+1].

1-Butyl-2-((1-(1-ethyl-1H-benzimidazol-2-yl)-ethyl)thio)-1H-benzimidazole 3k: No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of-NH group; ¹H NMR (400 MHz, DMSO-d₆ / TMS): δ 1.55 (m, 2H,-NCH₂ of ethyl of-CH₂CH₃Bz), 3.80 (t, 3H,-CH₃ of ethyl of-CH₂CH₃Bz), 1.38 (t, 2H,-NCH₂ of butyl of –SBz), 1.68 (m, 2H,-NCH₂CH₂ of butyl of –SBz), 2.59 (m, 2H,-NCH₂CH₂CH₃ of butyl of –SBz), 3.72 (t, 3H,-NCH₂CH₂CH₂CH₃ of butyl of –SBz), 6.65-7.62 (complex, m, 8H, aryl protons), 1.82 (d, 3H,-CH(CH₃)₂), 3.96 (m, 1H,-CH(CH₃)₂); MS (Cl): m/z 379 [M⁺+1].
1-Benzyl-2-((1-(1-methyl-1'H-benzimidazol-2-yl)-thio)ethyl)-1'H-benzimidazole 3f: No diagnostic peak in IR region 3500 – 3000 cm\(^{-1}\), indicating absence of -NH group; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)/TMS): \(\delta\) 4.88 (s, 2H, -NCH\(_2\) benzyl of -CHCH\(_3\)), 1.67 (m, 2H, -CHCH\(_3\) of ethyl of -SBz), 7.30-8.26 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.79 (d, 3H, -CHCH\(_3\)), 3.76 (m, 1H, -CHCH\(_3\)); MS (Cl): \(m/z\) 441 [M\(^+\)+1].

1-Benzyl-2-(1-((1-ethyl-1'H-benzimidazol-2-yl)-thio)ethyl)-1'H-benzimidazole 3m: No diagnostic peak in IR region 3500 – 3000 cm\(^{-1}\), indicating absence of -NH group; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)/TMS): \(\delta\) 4.82 (s, 2H, -NCH\(_2\) benzyl of -CHCH\(_3\)), 1.65 (m, 2H, -NCH\(_2\) of ethyl of -SBz), 3.90 (t, 3H, -CHCH\(_3\) of ethyl of -SBz) 7.30-8.34 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.65 (d, 3H, -CHCH\(_3\)), 3.98 (m, 1H, -CHCH\(_3\)); MS (Cl): \(m/z\) 413 [M\(^+\)+1].

1-Benzyl-2-(1-(1-butyl-1'H-benzimidazol-2-yl)-thio)ethyl)-1'H-benzimidazole 3n: No diagnostic peak in IR region 3500 – 3000 cm\(^{-1}\), indicating absence of -NH group; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)/TMS): \(\delta\) 1.35 (t, 2H, -NCH\(_2\) of butyl of -CHCH\(_3\)), 1.67 (m, 2H, -NCH\(_2\)CH\(_2\) of butyl of -SBz), 2.56 (m, 2H, -NCH\(_2\)CH\(_2\)H of butyl of -SBz), 3.70 (t, 3H, -NCH\(_2\)CH\(_2\)CH\(_3\) of butyl of -SBz), 6.62-7.62 (complex, m, 8H, aryl protons), 1.48 (d, 3H, -CHCH\(_3\)), 3.32 (m, 1H, -CHCH\(_3\)); MS (Cl): \(m/z\) 441 [M\(^+\)+1].

1-Butyl-2-(1-(1-methyl-1'H-benzimidazol-2-yl-thio)ethyl)-1'H-benzimidazole 3o: No diagnostic peak in IR region 3500 – 3000 cm\(^{-1}\), indicating absence of -NH group; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)/TMS): \(\delta\) 1.41 (s, 2H, -NCH\(_2\) benzyl of -CHCH\(_3\)), 1.65 (m, 2H, -NCH\(_2\)CH\(_2\) of butyl of -CHCH\(_3\)), 2.56 (m, 2H, -NCH\(_2\)CH\(_2\)H of butyl of -SBz), 3.70 (t, 3H, -NCH\(_2\)CH\(_2\)CH\(_3\) of butyl of -SBz), 6.62-7.62 (complex, m, 8H, aryl protons), 1.58 (d, 3H, -CHCH\(_3\)), 3.49 (m, 1H, -CHCH\(_3\)); MS (Cl): \(m/z\) 365 [M\(^+\)+1].

1-Butyl-2-(1-(1-ethyl-1'H-benzimidazol-2-yl-thio)-ethyl)-1'H-benzimidazole 3p: No diagnostic peak in IR region 3500 – 3000 cm\(^{-1}\), indicating absence of -NH group; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)/TMS): \(\delta\) 1.35 (t, 2H, -NCH\(_2\) of butyl of -CHCH\(_3\)), 1.67 (m, 2H, -NCH\(_2\)CH\(_2\) of butyl of -CHCH\(_3\)), 2.56 (m, 2H, -NCH\(_2\)CH\(_2\)H of butyl of -SBz), 3.70 (t, 3H, -NCH\(_2\)CH\(_2\)CH\(_3\) of butyl of -SBz), 6.62-7.62 (complex, m, 8H, aryl protons), 1.66 (d, 3H, -CHCH\(_3\)), 3.87 (m, 1H, -CHCH\(_3\)); MS (Cl): \(m/z\) 379 [M\(^+\)+1].

1-Benzyl-2-((1-(1-butyl-1'H-benzimidazol-2-yl)-thio)ethyl)-1'H-benzimidazole 3q: No diagnostic peak in IR region 3500 – 3000 cm\(^{-1}\), indicating absence of -NH group; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)/TMS): \(\delta\) 1.35 (t, 2H, -NCH\(_2\) benzyl of -CHCH\(_3\)), 1.67 (m, 2H, -NCH\(_2\)CH\(_2\) of butyl of -CHCH\(_3\)), 2.56 (m, 2H, -NCH\(_2\)CH\(_2\)H of butyl of -CHCH\(_3\)), 3.70 (t, 3H, -NCH\(_2\)CH\(_2\)CH\(_3\) of butyl of -CHCH\(_3\)), 4.82 (s, 2H, -NCH\(_2\) benzyl of -SBz)), 7.30-8.26 (complex, m, 13H, 5H aromatic benzyl + 8H aryl protons), 1.79 (d, 3H, -CHCH\(_3\)), 3.76 (m, 1H, -CHCH\(_3\)); MS (Cl): \(m/z\) 441 [M\(^+\)+1].

Alternative route for preparation of 3f-q
A mixture of N-alkyl-2-chloromethylbenzimidazolide (1, R=alkyl) (0.95g, 5 mmole), N-alkyl-2-mercaptobenzimidazole 2 (R'=alkyl) (5 mM), in methanol using TEA as a base under reflux for 3 hr gave 3f-q. Compound 3f-q was found to be identical in m.p., m.m.p. and TLC with the corresponding derivatives prepared earlier in the route 3 (R=H, R'=alkyl) / 3 (R=alkyl, R'=H) to 3f-q.

Conclusion
A mild and simple method for the synthesis of a variety of symmetrical/unsymmetrical substituted bisbenzimidazole sulphides has been developed. The synthesized compounds have been found to have significant biological activity.

Acknowledgement
The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad for providing the necessary facilities.

References

