Green and efficient synthesis of 2-(4-oxo-3,4-dihydroquinazolin-2-yl)-2,3-dihydropthalalazine-1,4-dione

Md Rafeeq*, B Srinivasa Reddy, Ch Venkata Ramana Reddy, A Naidu & P K Dubey
Department of Chemistry, Jawaharlal Nehru Technological University, Hyderabad College of Engineering, Kukatpally, Hyderabad 500 085, India
E-mail: mohammadrafeeq8@gmail.com

Received 16 December 2013; accepted (revised) 20 January 2015

2-Hydrazinoquinazolin-3H-4-ones 1a,b were reacts with each of the anhydrides, phthalic anhydride 2a, succinic anhydride 2b and maleic anhydride 2c independently in PEG-600 at RT to yield 2-[2-(4-oxo-3,4-dihydroquinazolin-2-yl)hydrazinecarbonyl]benzoic acid 3a,b, 4-oxo-4-(2-(4-oxo-3,4-dihydroquinazolin-2-yl)hydrazinyl)butanoic acid 3c,d and 4-oxo-4-(2-(4-oxo-3,4-dihydroquinazolin-2-yl)hydrazinyl)but-2-enoic acid 3ef, respectively. 3a,b, 3c,d, 3ef have been transformed into 2-(4-oxo-3,4-dihydroquinazolin-2-yl)-2,3-dihydropthalalazine-1,4-dione 4a.b, 1-(4-oxo-3,4-dihydroquinazolin-2-yl)piperazine-3,6-dione 4c,d and 1-(4-oxo-3,4-dihydroquinazolin-2-yl)-1,2-dihydropyridazine-3,6-dione 4ef, respectively by heating each in PEG-600 at 100 °C for 3-3.5 hr in high yields and in high purity, involving a dehydrative ring closure. The final compounds 4a-f have also been prepared alternatively by reacting 1 with 2 in PEG-600 at 100 °C for 3.5-4 hr.

Keywords: 2-Hydrazinoquinazolin-4(3H)-one, phthalic anhydride, succinic anhydride, maleic anhydride, phthalalazine, PEG-600

Quinazolinones possess a variety of useful biological properties like antihypotensive1, choleretic and antiphlogistic2, anticancer3, antifungal4, anticonvulsant5, CNS depressant6, muscle relaxant7 etc.

Saleh et al.8 synthesised 3-amino-2-methyl-3H-[1,2,4]triazolo[5,1-b]-quinazolin-9-one by condensation of 2-hydrazino-3-phenylamino-3H-quinazolin-4-one with phthalic anhydride in refluxing methanol for 6 hr. Mogilaiah et al.9 reported the synthesis of 1,8-naphthyridine-3-carbonylphthalalazine-1,4-diones by the condensation of 1,8-naphthyridine-3-carboxylic acid hydrazides with phthalic anhydride using p-toluenesul-phonic acid as a catalyst under solid state conditions. Mogilaiah et al.10 also reported the microwave irradi-ation of a mixture of 3-aryl-2-hydrazino-1,8-naphhtyridines with phthalic anhydride in the presence of a catalytic amount of dimethylformamide resulting in 2-(3-aryl-1,8-naphthyridin-2-yl)-1,2,3,4-tetrahydropthalalazine-1,4-dione.

In continuation of our interest11,12 in the synthesis of novel quinazolin-4(3H)-one derivatives, using green methods, we herein describe the PEG-600 mediated synthesis of some quinazolin-4(3H)-one derivatives.

Results and Discussion

Commercially available anthranilamide was treated with carbon disulfide in isopropyl alcohol containing KOH giving the previously reported13 2-mercaptoquinazolin-4(3H)-one. The latter was heated with hydrazine hydrate in ethanol to obtain 2-hydrazinoquinazolin-4(3H)-one (1a, i.e. 1, R=H) also known in literature14, 2-Mercaptoquinazolin-3-phenyl-4(3H)-one (1b, i.e. 1, R= ph), the other starting material, was prepared by refluxing the commercially available anthranilic acid with phenylisothiocyanate in acetic acid giving the previously reported15 2-mercapto-3-phenylquinazolin-3H-4-one followed by treatment of the latter with hydrazine hydrate in refluxing ethanol. Condensation of 1a with phthalic anhydride 2b in PEG-600 at RT for 30 min resulted in the formation of 2-[N-(oxo-3,4-dihydroquinazolin-2-yl)hydrazinocarbonyl]benzoic acid 3a. Its structure has been established on the basis of its spectral data. Thus, its IR (KBr) showed absorptions at 3433 and 3245 cm⁻¹ assignable to the NH or OH stretching vibrations whereas the bonded OH and bonded NH stretching vibrations appeared as broad peak at 3061 cm⁻¹ of medium intensity. The strong, sharp absorptions at 1703 and 1671 cm⁻¹ in the IR spectrum were assigned to carbonyl groups. Its ¹H NMR in DMSO-d₆ showed signals at δ 6.8-8.1 (m, 8H, Ar-H), 10.2 (s, 2H, NH, D₂O exchangeable), 10.9 (s, 1H, OH, D₂O exchangeable). Its ¹³C NMR spectrum showed signals at δ 120.80, 123.51, 126.64, 126.71, 127.30, 128.82, 130.10, 131.57, 132.08, 133.44,
134.05, 146.92, 153.33, 161.09, 64.80 and 167.65. Its mass spectrum showed the molecular ion peak at m/z 325 corresponding to a molecular mass of 324 when recorded in the Q+1 mode.

The above reaction of phthalic anhydride with 1a was found to be a general one and extended to other anhydrides such as succinic anhydride 2b and maleic anhydride 2c and the products obtained were assigned structures 3b-f (Table I) on the basis of analogy and on the basis of their spectral data (Table I).

The above product 3a (i.e. R=H) was heated in PEG-600 at 100 °C for about 3 hr which resulted in the formation of the cyclised product, i.e. 2-(4-oxo-3-phenyl-3, 4-dihydroquinazolin-2-yl)-2, 3-dihydropthalazine-1,4-dione 4a. Its structure was assigned on the basis of its spectral data. Thus, its IR (KBr) spectrum showed the absence of any absorption in the region 3000-3500 cm⁻¹ due to NH or OH groups but showed strong absorptions at 1798, 1737, 1681 cm⁻¹ due to the three carbonyl groups. Its ¹H NMR (DMSO-d₆) showed only a multiplet in the region δ 7.1-8.0 due to aromatic protons, 10.2 (broad, 2H, NH, D₂O exchangeable). Its ¹³C NMR spectrum showed signals at δ 114.61, 115.12, 122.93, 126.43, 126.95, 130.82, 131.22, 134.21, 134.39, 135.02, 139.79, 152.7, 160.68, 161.55 and 165.79. Its mass spectrum showed the molecular ion peak at m/z 307 corresponding to a molecular mass of 306 when recorded in the Q+1 mode.

Table I — Synthesis of 3a-f from 1a-b and 2a-c in PEG-600

<table>
<thead>
<tr>
<th>Substrate 1</th>
<th>Substrate 2</th>
<th>Product</th>
<th>Time (min)</th>
<th>Yield (%)</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2a</td>
<td>3a</td>
<td>22</td>
<td>95</td>
<td>>260</td>
</tr>
<tr>
<td>1a</td>
<td>2b</td>
<td>3b</td>
<td>26</td>
<td>88</td>
<td>236-38</td>
</tr>
<tr>
<td>1a</td>
<td>2c</td>
<td>3c</td>
<td>26</td>
<td>81</td>
<td>230-32</td>
</tr>
<tr>
<td>1b</td>
<td>2a</td>
<td>3d</td>
<td>24</td>
<td>91</td>
<td>249-51</td>
</tr>
<tr>
<td>1b</td>
<td>2b</td>
<td>3e</td>
<td>28</td>
<td>84</td>
<td>211-13</td>
</tr>
<tr>
<td>1b</td>
<td>2c</td>
<td>3f</td>
<td>27</td>
<td>90</td>
<td>198-99</td>
</tr>
</tbody>
</table>
The above reaction has been found to be a general one and has been extended to 3b-f and the products thus obtained were assigned structures 4b-f (Table II) on the basis of spectral data (see in Table III).

In an alternative approach, 4a-f could also be prepared directly by treating 1a,b with 2a-c in PEG-600 at 100°C for 4-5 hr (1+2\rightarrow 4). 6a-c were prepared by refluxing phthalic anhydride, succinic anhydride, maleic anhydride with hydrazine hydrate independently in acetic acid for 2-3 hr by the reported procedure16-18. 5a,b also were prepared by treatment of 2-mercaptoquinazolin-4(3\textit{H})-one with dimethylsulphate by the earlier reported procedure19,20 (Scheme I).

In another approach, 4a-f was prepared directly by heating 5a,b, independently, each with 2,3-dihydropthalazine-1,4-dione 6a, tetrahydropyridazine-3,6-dione 6b and 1,2-dihydropyridazine-3,6-dione 6c at 100 °C in PEG-600 for 6-7 hr. The products, i.e. 4a-f, obtained were found to be identical in m.p., m.m.p., and co-TLC with those of the same products obtained in the route 5 + 6 \rightarrow 4 described earlier above.

Plausible Mechanism
2-Hydrazinoquinazolinone 1 attacks the carbonyl carbon of the anhydride 2 to afford the mono acid mono amide derivative 3. Then, the quinazolinone ring containing nitrogen of 3 attacks the carbonyl carbon of the acid group followed by dehydration gives quinazolinophthalazine 4 (Scheme II).

Experimental Section
Melting points are uncorrected and were determined in open capillary tubes in sulphuric acid bath. TLC was run on silica gel-G and visualization was done using iodine or UV light. IR spectra were recorded using a Perkin-Elmer 1000 instrument in KBr pellets. 1H NMR spectra were recorded in DMSO-\textit{d}$_{6}$ using TMS as internal standard operating at 400 MHz.

General procedure for the preparation of 3a-f from 1a,b and 2a-c
To a solution of the 2-hydrazinoquinazolin-4(3\textit{H})-ones 1a,b (10 mM) in PEG-600 (5 mL) at RT was added a solution of the anhydride 2a-c (10 mM) in PEG-600 (15 mL) at RT. The reaction mixture was stirred for 30-40 min and then poured into ice-cold water. The separated solid was filtered, washed with water (2×10 mL), and dried. These products were purified by recrystallization from suitable solvents to obtain pure 3a-f.

Preparation of 4a-f from 3a-f
A solution of the mono acid mono amide derivative 3a-f (10 mM) in PEG-600 (15 mL) was heated at 100°C for 3-3.5 hr. At the end of this period, the mixture was cooled to RT and poured into ice-cold water. The separated solid was filtered, washed with water (2×10 mL), and dried. The crude product was purified by recrystallization from suitable solvent to obtain pure 4a-f.

Table II — Synthesis of 4a-f from 3a-f in PEG-600

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Product (4a-f)</th>
<th>Time (hr)</th>
<th>Yield (%)</th>
<th>m.p. (°C)</th>
<th>Starting Material</th>
<th>Product (4a-f)</th>
<th>Time (hr)</th>
<th>Yield (%)</th>
<th>m.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>4a</td>
<td>3.0</td>
<td>94</td>
<td>>260</td>
<td>3d</td>
<td>4d</td>
<td>3.4</td>
<td>93</td>
<td>260-62</td>
</tr>
<tr>
<td>3b</td>
<td>4b</td>
<td>3.5</td>
<td>90</td>
<td>244-46</td>
<td>3e</td>
<td>4e</td>
<td>3.4</td>
<td>83</td>
<td>215-17</td>
</tr>
<tr>
<td>3c</td>
<td>4c</td>
<td>3.1</td>
<td>85</td>
<td>>260</td>
<td>3f</td>
<td>4f</td>
<td>3.4</td>
<td>88</td>
<td>253-55</td>
</tr>
<tr>
<td>Entry</td>
<td>IR (cm⁻¹)</td>
<td>Spectral data</td>
<td>Mass (m/z)</td>
<td>Mol. Formula</td>
<td>Found (Calcd) %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>See under experimental section</td>
<td>C₂₂H₁₂N₄O₄</td>
<td>56.26</td>
<td>C</td>
<td>17.28</td>
<td>19.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>2.49 (t, 2H, CH₂), 2.72 (t, 2H, CH₂) 7.16-8.06 (m, 4H, Ar-H), 10.55 (s, 2H, NH, D₂O, exchangeable), 10.80</td>
<td>C₂₂H₁₂N₄O₄</td>
<td>52.17</td>
<td>H</td>
<td>3.38</td>
<td>20.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>13C: 30.53, 32.82, 126.60, 126.71, 126.86, 127.30, 133.43, 146.91, 153.32, 161.06, 173.82, 177.33, 1710, 1H, -CH₃, 6.50 (s, 2H, -CH₃), 10.35 (s, 2H, NH, D₂O, exchangeable), 11.14 (s, 1H, OH, D₂O, exchangeable).</td>
<td>C₂₂H₁₀N₄O₄</td>
<td>52.56</td>
<td>N</td>
<td>3.68</td>
<td>20.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>7.16-8.06 (m, 13H, Ar-H), 10.23 (s, 2H, NH, D₂O, exchangeable), 10.85 (s, 1H, OH, D₂O, exchangeable)</td>
<td>C₂₂H₁₀N₄O₄</td>
<td>66.00</td>
<td>C</td>
<td>4.03</td>
<td>13.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>2.49 (t, 2H, CH₂), 2.72 (t, 2H, CH₂), 6.80-8.06 (m, 9H, Ar-H), 10.12 (s, 2H, NH, D₂O, exchangeable), 10.90</td>
<td>C₂₂H₁₀N₄O₄</td>
<td>61.36</td>
<td>H</td>
<td>4.58</td>
<td>15.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>See under experimental section</td>
<td>C₂₂H₁₀N₄O₃</td>
<td>62.74</td>
<td>C</td>
<td>3.29</td>
<td>18.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>2.76 (s, 4H, CH₂), 7.12-8.05 (m, 4H, Ar-H), 10.21</td>
<td>C₂₂H₁₀N₄O₃</td>
<td>55.81</td>
<td>H</td>
<td>3.90</td>
<td>21.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>6.50 (s, 1H, -CH₃), 10.90 (s, 2H, NH, D₂O, exchangeable)</td>
<td>C₂₂H₁₀N₄O₃</td>
<td>56.25</td>
<td>N</td>
<td>3.15</td>
<td>21.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>7.16-8.06 (m, 13H, Ar-H), 10.21 (s, 1H, NH or OH, D₂O, exchangeable).</td>
<td>C₂₂H₁₀N₄O₃</td>
<td>69.10</td>
<td>C</td>
<td>3.69</td>
<td>14.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f</td>
<td>6.72 (s, 2H, -CH₂), 7.20-8.26 (m, 9H, Ar-H), 10.21</td>
<td>C₂₂H₁₀N₄O₃</td>
<td>65.06</td>
<td>H</td>
<td>3.64</td>
<td>16.86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III — Characterization data for compounds 3a-f and 4a-f
Scheme I

1a-b + 2a-c → PEG-600

RT/3G-40 min → 3a-f

PEG-600 heating at 100 °C, 3-4 hr → 4a-f

PEG-600/water bath 100 °C, 3-3.5 hr

R = H, Ph; 2a = 2b = CH₂CH₂ 2c = CH₂CH₂

Scheme II

H₂NHH₂ + 2 → 3

3 → 4

4 → 3a

R = H, Ph; 2a = 2b = CH₂CH₂ 2c = CH₂CH₂
Preparation of 4a-f from 1a,b and 2a-c
To a solution of the hydrazinoquinazolinone derivatives 1 (10 mM) in PEG-600 (15 mL) was added a solution of the anhydrides 2a-c (10 mM) in PEG-600 and the mixture heated at 100 °C for 4-5 hr. Then, the reaction mixture was cooled to RT and poured into ice-cold water. The separated solid was filtered, washed with water (2×10 mL) and then dried. This product was purified by recrystallization from suitable solvent to obtain pure 4a-f.

Preparation of 4a-f from 5a,b and 6a-c
To a solution of the 5a,b (10 mM) in PEG-600 (10-15 mL) was added the anhydrides 6a-c (10 mM) and the mixture heated at 100°C for 6-7 hr. Then, the reaction mixture was cooled to RT. The separated solid was filtered, washed with water (2×10 mL) and dried. The product was purified by recrystallization from suitable solvent to obtain pure 4a-f. The recovered PEG-600 with water was reused for further cycles.

Acknowledgement
The authors are indebted to the University Grants Commission, Govt. of India, and New Delhi for the sanction of Major Research Project (to Dr. Ch.VVR). The authors are also thankful to the authorities of Jawaharlal Nehru Technological University, Hyderabad for providing laboratory facilities.

References