Disruption of glucose tolerance caused by glucocorticoid excess in rats is partially prevented, but not attenuated, by arjunolic acid

Luiz M Gonçalves-Neto, Francielle BD Ferreira, Cristiane dos Santos, Antonio C Boschero, Valdir A Facundo, Adair R S Santos, Everson A Nunes & Alex Rafacho*

1Department of Physiological Sciences and 2Biochemistry, Centre of Biological Sciences, 88040-900, Federal University of Santa Catarina–UFSC, Florianópolis, Brazil
3Department of Structural and Functional Biology, Institute of Biology, 13083-862, State University of Campinas–UNICAMP, Campinas, Brazil
4Department of Chemistry, 78900-500, Federal University of Rondônia–UNIR, Porto Velho, Brazil

Received 2 August 2013; revised 4 August 2014

Arjunolic acid (AA) obtained from plants of the Combretaceae family has shown anti-diabetic effects. Here, we analyzed whether the diabetogenic effects of dexamethasone (DEX) treatment on glucose homeostasis may be prevented or attenuated by the concomitant administration of AA. Adult Wistar rats were assigned to the following groups: vehicle-treated (Ctl), DEX-treated (1 mg/kg body weight intraperitoneally for 5 days) (Dex), AA-treated (30 mg/kg body weight by oral gavage twice per day) (Aa), AA treatment previous to and concomitant to DEX treatment (AaDex), and AA treatment after initiation of DEX treatment (DexAa). AA administration significantly ameliorated (AaDex), but did not attenuate (DexAa), the glucose intolerance induced by DEX treatment. AA did not prevent or attenuate the elevation in hepatic glycogen and triacylglycerol content caused by DEX treatment. All DEX-treated rats exhibited hepatic steatosis that seemed to be more pronounced when associated with AA treatment given for a prolonged period (AaDex). Markers of liver function and oxidative stress were not significantly altered among the groups. Therefore, AA administered for a prolonged period partially prevents the glucose intolerance induced by DEX treatment, but it fails to produce this beneficial effect when given after initiation of GC treatment. Since AA may promote further hepatic steatosis when co-administered with GCs, care is required when considering this phytochemical as a hypoglycemiant and/or insulin-sensitizing agent.

Keywords: Arjunolic acid, Glucocorticoid, Glucose tolerance, Insulin sensitivity, Metabolism

Endogenous glucocorticoids (GCs) play a role in the immune, nervous, cardiovascular and endocrine systems. GC synthesis and secretion are under the control of the hypothalamus-pituitary-adrenal (HPA) axis, which in turn is modulated by conditions such as metabolic states, physical exercise, and emotional stress. Exogenous synthetic compounds with GC activity, e.g., prednisolone and dexamethasone (DEX), are widely used for clinical purposes due to their potential anti-inflammatory, anti-allergic and immunosuppressive effects. GC therapies provide beneficial effects for patients with rheumatoid diseases, such as rheumatoid arthritis, as well as those with bowel diseases or asthma. However, when administered in excess, according to the variation in the dose and/or period, GCs can cause several adverse effects that impact individual health and welfare.

The negative impact of GC treatment on metabolism includes the development of glucose intolerance, insulin resistance, and dyslipidemia, with deviation of blood glucose from normal to hyperglycemic values, especially among individuals who are susceptible to glucose intolerance.

Intermittent treatment and/or low doses of GCs may reduce their side effects. Although the most adverse effects of GC treatment on metabolism may be reversible after interruption of GC treatment, patients receiving GC are commonly subjected to prolonged treatments that may culminate in irreversible derangements of metabolism, e.g., leading to the development of type 2 diabetes mellitus.

Experimental studies combining GCs treatment with anti-diabetic agents remain an open field of investigation. In one study, human volunteers treated concomitantly with DEX and troglitazone, a thiazolidinedione that interacts with and activates the peroxisome proliferator-activated receptor (PPAR-γ),
had prevented almost all parameters that are typically altered by DEX treatment alone [e.g., glucose intolerance, insulin resistance, reduced insulin-mediated free fatty acids (FFA) suppressibility, hyperleptinemia]11. In another study, mice treated with DEX plus metformin, a biguanide that is largely prescribed as an insulin-sensitizing agent, also exhibited prevention of the deleterious effects of DEX on glucose homeostasis12.

Some phytochemicals obtained from traditional medicinal plants have demonstrated anti-diabetic actions. In this context, arjunolic acid (AA), a triterpenoid saponin that was first isolated from \textit{Terminalia arjuna} (a deciduous tree of the \textit{Combretaceae} family) and then from numerous plants, including the \textit{Combretum leprosum} (found in the northeastern region of Brazil), is a phytochemical with putative anti-diabetic actions13-16. Extracts of \textit{T. arjuna} or AA isolated from \textit{T. arjuna} have been shown to provide significant amelioration of glucose homeostasis in rats made hyperglycemic by alloxan13,14 or streptozotocin administration15,17. Its actions include the antioxidative properties in the liver17 and pancreas15, and this may occur through an increase of \beta-cell function14. However, no evidence exists regarding the ability of AA to improve the altered glucose homeostasis induced by GCs. Hence, the present study has been designed to evaluate the possible prophylactic and/or therapeutic efficacy of AA in an experimental model of glucose dyshomeostasis induced by DEX treatment. GC-induced glucose intolerance and insulin resistance is well established in rats after high-dose DEX treatment7,9. The main hypothesis is that AA, given in a concentration known to promote hypoglycemiant effects15,17, introduced before and/or concomitant to DEX treatment may exert a preventive or attenuating effect on the metabolic disturbances caused by GC treatment.

Materials and Methods

Ethical approval—The experiments with rats were approved by the Federal University of Santa Catarina Committee for Ethics in Animal Experimentation under protocol nº PP00709 and in accordance with the eighth edition of the guide for the care and use of laboratory animals -OACU-NIH.

Materials DEX phosphate (Decadron®) was obtained from Aché (Campinas, SP, Brazil). AA was isolated from the roots of \textit{Combretum leprosum} at the Department of Organic Chemistry (Universidade Federal de Rondônia, Brazil) and characterized by spectral analyses, (RMN-1H) and (RMN-13C), and by comparison with the spectrum literature data18; its degree of purity was >95%. The reagents used for the radioimmunoassay (RIA), to determine the hepatic glycogen and fat content, and the serum lipid peroxidation were obtained from LabSynth (Diadema, SP, Brazil) and from Sigma (St. Louis, MO, USA). The 125I-labeled insulin (human recombinant) for RIA assay was purchased from PerkinElmer (Waltham, MA, USA).

Animals—Experiments were performed on five groups of 3-month old male Wistar rats. The rats were obtained from the Federal University of Santa Catarina Animal Breeding Center and were kept at 21 ± 1 °C on a 12 h light/dark cycle (lights on 06:00–lights off 18:00 hrs). The rats had access to food (commercial standard chow, Nuvilab® CR-1; Nuvital, PR, Brazil) and water ad libitum.

\textit{Dexamethasone and arjunolic acid treatment—} AA treatment (30 mg/kg body weight by oral gavage, dissolved in 5% Tween 80), was administered twice per day, at 8:00 and 18:00 hrs for 3 consecutive days before the beginning of DEX treatment (Aa and AaDex groups) (Fig. 1). DEX treatment was initiated at day 4 and consisted of a daily injection [1.0 mg/kg body weight, intraperitoneally (ip), dissolved in 0.9% NaCl11] for 5 consecutive days at 08:00 hrs (AaDex, Dex and DexAa groups). The DexAa rats underwent AA treatment initiated 24 h after the first DEX administration. The Ctl and Aa groups were treated with 0.9% NaCl (1 mL/kg body weight, ip), while the Ctl and Dex groups were treated with 5% Tween 80 (2 mL/kg body weight by oral gavage). The doses of DEX and AA were based on previous studies7,9,15,17,19,20. The effects of DEX treatment on glucose homeostasis parameters of rats were well investigated in a dose- and time-dependent manner as well as its reversible effects after the interruption of DEX treatment7,9.

Body weight, food intake, blood glucose, and serum insulin and triacylglycerol—Body weight and food intake were measured beginning two days before the start of treatment until the day of euthanasia. Fasted (12-14 h) rats had blood collected from the tail to measure blood glucose levels with a glucometer (Accu-Check® Performa, Roche Diagnostics GmbH, Mannheim, Germany). Subsequently, the rats were sacrificed (exposure to CO\textsubscript{2} followed by decapitation), and the trunk blood was collected. Organs (listed in Table 1) were gently withdrawn and weighed. The serum, obtained after the blood
was clotted and centrifuged in saline-washed tubes, was used to measure all of the parameters. Insulin levels were determined by radioimmunoassay (RIA) utilizing a guinea pig anti-rat insulin antibody and rat insulin as the standard. Serum triacylglycerol (TG), glutamate pyruvate transaminase (SGPT), and glutamate oxaloacetate transaminase (SGOT) (Labtest, Lagoa Santa, MG, Brazil) were measured according to the manufacturer using a spectrophotometer (Berthold technologies, Bad Wildbad, Germany).

Determination of insulin sensitivity by the homeostatic model assessment (HOMA) and triacylglyceride and glucose index (TyG)—HOMA, a method to quantify insulin resistance, was calculated using the following formula: fasting glycemia (mM) × fasting insulinemia (µU/mL)/22.5. TyG, a recently validated method to determine insulin resistance, was calculated using the following formula: Ln[fasting triacylglyceridemia (mg/dL) × fasting glycemia (mg/dL)/2].

Liver glycogen measurements—Determination of hepatic glycogen was performed according to Lo et al. with some previously described modifications. Briefly, the liver samples (300-500 mg) were transferred to test tubes containing 30% KOH (w/v) and boiled for 1 h until they were completely homogenized. Na₂SO₄ was then added, and the glycogen was precipitated with ethanol. The samples were centrifuged at 800×g for 10 min, the supernatants were discarded, and the glycogen was dissolved in hot distilled water. Ethanol was added, and the pellets that were obtained after a second centrifugation were dissolved in distilled water in a final volume of 25 mL. Glycogen content was measured by treating a fixed volume of sample with phenol reagent and H₂SO₄. Absorbance was then read at 490 nm with a spectrophotometer (Berthold Technologies). For determination of hepatic fat content, liver samples (100 mg) were transferred to test tubes containing 0.7 mL 1 M NaCl and homogenized with T18 UltraTurrax® (IKA®; Staufen, Germany). Then, 2 mL methanol/chloroform solution (1:2, v/v) was added and the tubes were subsequently centrifuged for 5 min at 4, 000 rpm (Eppendorf 5810R). The methanolic phase were then transferred to another test tube and after wet the solution with in N₂ a solution of methanol/Triton 100 (1:2, v/v) was added to the samples for determination of hepatic TG content.

Liver histology—To study the morphological aspects of the liver, five liver fragments (the same portion for all) from each group were excised and immersion-fixed for 12 h in 5% paraformaldehyde fixative solution, dehydrated and embedded in paraffin according to Rafacho et al. The largest liver area of block were cut (5 µm) on a rotary microtome and adhered to individual normal glass. The section was stained with Hematoxilin & Eosin to perform the morphological analysis and the images were then registered by a CCD camera coupled to a BX-60 Olympus photomicroscope.

Liver markers of oxidative stress—Liver fragments were removed from all groups for the determinations of some markers of oxidative stress as follows. Total glutathione (GSH) quantification was assayed by the colorimetric method. Samples were homogenized with perchloric acid 0.5 M to precipitate protein, and...
centrifuged at 15,000×g for 5 min. The supernatant containing the GSH was neutralised with phosphate buffer and mixed with reaction mix containing phosphate buffer 0.1 M, pH 7.4; EDTA 1 mM; NADPH 0.2 mM; DTNB (5,5'-dithiobis-2-nitrobenzoic acid) 0.1 mM and 0.05 units of glutathione reductase in a microtitr plate. The rate of formation of TNB was followed in 412 nm over 5 min and samples slopes were compared to oxidized glutathione standards. Lipid peroxidation was estimated by TBARS assay (thiobarbituric acid reactive substances)26. Tissue was homogenized in phosphate buffer 0.1 M pH 7.4 with EDTA 1 mM and centrifuged for 10 min at 15,000×g, and the supernatant was collected for the assay. Samples (100 µL) were added to reaction mixture containing 100 µL SDS 8.1%; 250 µL acetic acid 1.3 M/HCl 0.27 M and 250 µL thiobarbituric acid 0.6%, and incubated for 1 h at 100 °C. Absorbance was recorded at 532 nm and lipid peroxidation levels were expressed as µmoles malonaldehyde/mg protein. Protein carbonyl was quantified by the colorimetric reaction with DNPH (2,4-Dinitrophenylhydrazine)27. Tissue was homogenized in phosphate buffer 0.1 M, pH 7.4 with EDTA 1 mM and centrifuged for 10 min at 15,000×g. To remove nucleic acids, 1% streptomycin sulfate was added to the samples, incubated for 15 min at room temperature and centrifuged at 6000×g for 10 min to precipitate DNA. Then, 200 µL of samples were reacted with 800 µL DNPH 10 mM or with HCl 2.5 M for 1 h in the dark. Samples were washed twice with trichloroacetic acid 10% and another 3 times with ethyl acetate/ethanol 1:1 to remove excess DNPH. After the final wash samples were diluted in 500 µL guanidine hydrochloride 6 M, and absorbance was measured in 375 nm. Absorbance of the HCl-treated samples were discounted.

Intraperitoneal glucose tolerance test (ipGTT)—A separate group of fasted (12-14 h) rats were used for ipGTT experiments. Conscious rats had their tail tip cut for the collection of drops of blood. For each time point of blood collection, the first drop was discarded and the second was used for the determination of glycemia (time 0) using a glucometer, as described previously. Immediately, 50% glucose solution (2 g/kg body weight, ip) was administered, and blood samples were collected at 30, 60 and 120 min from the tail tip for blood glucose level measurements7,8.

Statistical analysis—Results are expressed as the mean±SE from 10 observations of experiments. Analysis of variance (one way ANOVA) for unpaired groups followed by the Tukey post-test was utilized for multiple comparisons of parametric data. When necessary, Kruskal-Wallis followed by the Dunn post-test was used. Graphpad Prism v.5.0 (Graphpad, Inc., La Jolla, CA) software was used to perform the analysis. The significance level adopted was P<0.05.

Results

Body weight, food intake and organ mass in rats treated with DEX and AA—No differences in body weights were observed among the 5 groups before initiation of the treatments (Fig. 2a). Dex, AaDex and DexAa rats exhibited a linear and progressive

![Graph](image-url)

Fig. 2.—Effect of DEX and/or AA treatment on body weight and food intake. (a) average body weight values. (b) average food intake values. Values are mean±SE from 10 observations. * significantly different vs. their respective control group and † vs. AaDex rats using ANOVA with the Tukey post-test (P<0.05).
reduced in AaDex or DexAa rats (adrenal gland was reduced in Dex rats, but it was not controls (P<0.05). At the day of euthanasia, the body weights of Dex, AaDex and DexAa rats were 11-13% lower than those of their respective controls (Ctl and Aa groups) (Fig. 2a). Administration of AA alone exerted no significant effects on the body weight of Aa over the 8 days of treatment (n=10). Figure 2b shows the mean food intake of the rats receiving AA and DEX treatments. As expected, all groups had similar average food intake before the beginning of substance administration. After the second treatment day, all DEX-treated rats showed a sharp decrease in food intake that was sustained until the end of the experimental protocol (P<0.05). Rats treated with AA alone had a modest but significant hypophagic effect compared to the Ctl group at days 6 and 7, which was normalized at day 8. The same trend was observed between DexAa and AaDex rats at days 6, 7 and 8 (P<0.05). At the day before euthanasia, Dex, AaDex and DexAa rats ate 28, 48 and 41% less chow, respectively, compared to their respective controls (Ctl and Aa rats) (Fig. 2b). Dex, AaDex and DexAa rats had higher relative (g/kg body weight) liver mass and lower relative spleen mass compared with their respective controls (P<0.05; Table 1). The relative mass of the adrenal gland was reduced in Dex rats, but it was not reduced in AaDex or DexAa rats (P<0.05). Retroperitoneal fat was not altered in DEX- and AA-treated animals compared to their respective controls. Heart, kidney and epididymal fat masses were relatively increased in Dex and DexAa rats compared to Ctl and Aa rats, respectively (P<0.05). These data demonstrate that excess DEX induces body weight loss parallel to hypophagia, and these alterations are not prevented (AaDex) or attenuated (DexAa) by the co-administration of AA.

Blood glucose and serum insulin content in DEX- and AA-treated rats—Dex rats had a non-significant increase in fasting glycemic values compared to Ctl rats (Fig. 3a). DexAa rats showed a significant increase in blood glucose values compared to Aa rats (Fig. 3a) (P<0.05—DEX effect). AaDex rats had a tendency towards higher glycemic values, but this did not reach statistical significance. Fasting serum insulin values revealed a marked 5.8-, 12.9- and 11.6-fold increase for Dex, AaDex and DexAa rats compared to Ctl and Aa rats, respectively (P<0.05; Fig. 3b). The serum insulin levels were similar between Ctl and Aa rats. The insulin to glucose ratio was significantly higher in all DEX-treated groups compared to their respective controls (P<0.05; Fig. 3c). The insulin sensitivity observed in Aa rats was quite similar to that of Ctl animals, as shown by the homeostatic model assessment (HOMA) values (Fig. 3d). However, the Dex, AaDex and DexAa groups presented a marked reduction in insulin sensitivity compared to their respective controls (P<0.05; Fig. 3d), and this reduction was greater in AaDex and DexAa rats than in Dex rats. These observations reinforce the evidence of negative effects of high GC on peripheral insulin sensitivity that seems to be exacerbated by AA independently of whether it is introduced before or after initiation of DEX treatment.

Circulating triacylglycerol and TyG index in Dex, AaDex and DexAa rats—The TG concentrations in fasted Dex, AaDex and DexAa rats were 1.8-, 2.0- and 2.2-fold higher than their respective controls (P<0.05; Fig. 4a). No significant alteration in circulating TG content was observed between the Aa and Ctl groups. The ratio between Dex/Ctl, AaDex/Aa and DexAa/Aa were similar in all conditions (Fig. 4b). Determination of peripheral insulin sensitivity by another homeostatic model derived from triacylglyceridemia and glycemia data, the TyG

Table 1—Effect of DEX and/or AA treatment on weight of body organs (normalized by the body weight) in Ctl, Dex, Aa, AaDex and DexAa rats [Values are mean ± SE from 10 observations]

<table>
<thead>
<tr>
<th></th>
<th>Heart (g/kg)</th>
<th>Liver (g/ kg)</th>
<th>Kidney† (g/kg)</th>
<th>Spleen (g/kg)</th>
<th>Adrenal† (mg/ kg)</th>
<th>Retro. fat† (g/kg)</th>
<th>Epidid. Fat† (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctl</td>
<td>3.9±0.1</td>
<td>32.6±0.4</td>
<td>7.6±0.1</td>
<td>2.3±0.1</td>
<td>160±12</td>
<td>16.8±1.6</td>
<td>12.0±0.9</td>
</tr>
<tr>
<td>Dex</td>
<td>4.5±0.1*</td>
<td>45.6±1.5*</td>
<td>8.0±0.2</td>
<td>1.4±0.1*</td>
<td>120±8*</td>
<td>14.6±1.1</td>
<td>15.6±0.9*</td>
</tr>
<tr>
<td>Aa</td>
<td>4.0±0.1</td>
<td>31.2±0.6</td>
<td>7.6±0.2</td>
<td>2.1±0.1</td>
<td>170±6</td>
<td>14.9±1.6</td>
<td>12.0±0.7</td>
</tr>
<tr>
<td>AaDex</td>
<td>4.3±0.1</td>
<td>45.7±1.5*</td>
<td>8.7±0.2*</td>
<td>1.3±0.1*</td>
<td>170±8*</td>
<td>11.5±1.6</td>
<td>14.0±0.8</td>
</tr>
<tr>
<td>DexAa</td>
<td>4.6±0.1*</td>
<td>46.5±1.3*</td>
<td>8.6±0.2*</td>
<td>1.3±0.1*</td>
<td>180±12*</td>
<td>11.4±1.0</td>
<td>15.6±0.5*</td>
</tr>
</tbody>
</table>

P<0.05; significantly different †vs. Ctl or Aa and *vs. Dex using ANOVA followed by the Tukey post-test. Retro=retroperitoneal. Epidid=epididymal †Both bilateral organs were weighed.
index, also demonstrated the presence of insulin resistance in the DEX-treated groups compared to their respective controls ($P<0.05$; Fig. 4c). Unlike the HOMA data, the TyG index revealed no additional effect of AA treatment upon the insulin resistance in AaDex and DexAA rats ($P<0.05$). These results demonstrate the adverse effects of high DEX on TG homeostasis and the lack of effects of AA in preventing (AaDex) or attenuating (DexAA) this finding.

Effect of DEX and AA treatments on liver measurements and morphology—Figure 5a shows the hepatic glycogen content in all groups. The hepatic glycogen contents were significantly higher in Dex (6.8-fold), AaDex (11.2-fold) and DexAA (9.8-fold) rats compared to Ctl and Aa rats, respectively ($P<0.05$). No alteration between the Aa and Ctl groups was observed. The hepatic triacylglycerol content was similar between Ctl and Aa rats and significantly enhanced in all DEX-treated groups, compared to their respective controls ($P<0.05$; Fig. 5b). The representative images for liver sections (Figs 5c-g and c'-g') revealed the presence of macrovesicular steatosis in all DEX-treated groups that seemed to be apparently more pronounced in liver from AaDex rats (compares Fig. f' with d' and g'). These data show no significant effect of AA treatment on the altered hepatic glycogen and triacylglycerol contents provoked by
GC excess, but reveal an apparent negative impact for AA treatment on liver histology when given for prolonged period in association with the DEX.

Markers of liver function in DEX- and AA-treated rats—Considering the steatotic appearance in liver from all DEX-treated rats, it was further evaluated some classical markers of liver function and oxidative stress in serum and liver fragments, respectively. The SGPT concentration were not altered between Ctl and Aa rats (Table 2), but it was higher in all DEX-treated groups being significantly different only in AaDex compared to Aa rats (n=5, P<0.05). No significant alteration was observed in SOGT concentration among all groups (n=5, Table 2). The liver content of GSH, lipid peroxidation and protein carbonylation were not altered among all groups studied (n=5, Table 2). These data reveals no significant impact for DEX and/or AA treatments on the liver markers of

![Fig. 5](image)

Fig. 5—Effect of DEX and/or AA treatment on hepatic glycogen and triacylglycerol content, and liver morphology. Hepatic glycogen (a) and triacylglycerol content (b). Representative liver section (c-g). Representative images in higher magnitude (c’-g’). Values are mean ± SE from 10 observations for A and 5 observations for B-G. * significantly different vs. their respective control group using ANOVA with the Tukey post-test (P<0.05).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Serum GPT and OPT, and liver GSH, lipid peroxidation and protein carbonylation in Ctl, Dex, Aa, AaDex and DexAa rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ctl</td>
</tr>
<tr>
<td>SGPT (µM NADH.1 min⁻¹)</td>
<td>17.7±1.4</td>
</tr>
<tr>
<td>SOPT (µM NADH.1 min⁻¹)</td>
<td>62.7±7.7</td>
</tr>
<tr>
<td>Liver GSH (µM GSH/g wet tissue)</td>
<td>11.8±0.9</td>
</tr>
<tr>
<td>Liver lipid peroxidation (mM MDA/mg protein)</td>
<td>0.24±0.03</td>
</tr>
<tr>
<td>Liver protein carbonylation (nM carbonyl/mg protein)</td>
<td>0.9±0.05</td>
</tr>
</tbody>
</table>

*P<0.05; significantly different *vs. Ctl or Aa and *vs. Dex using ANOVA followed by the Tukey post-test.
oxidative stress and point to a slight negative effect of the combination of DEX and AA treatments on SGPT values in AaDex rats.

Glucose tolerance in DEX- and AA-treated rats— Insulin resistance is commonly accompanied by glucose intolerance. All DEX-treated groups showed higher blood glucose values after a glucose challenge (min 60), compared to their respective controls ($n=8$, $P<0.05$; Fig. 6a). These increased glycemic values persisted for 2 hours post intraperitoneal glucose load only for the Dex group compared to the Ctl group. The capacity to deal with glucose seemed to be slightly improved in DexAa rats and is even better in AaDex rats compared to Dex rats, which is shown by the lower glycemic values for AaDex and DexAa rats at minute 120 (Fig. 6a). Aa rats exhibited a similar response to the glucose challenge in relation to the Ctl group. The area-under-the-glucose-curve (AUC) during the ipGTT was significantly higher in Dex (2.8-fold) and DexAa (1.9-fold) rats than in Ctl and Aa rats, respectively ($n=8$, Fig. 6b). The AUC values were slightly higher in AaDex rats than in Aa rats. These observations clearly demonstrate that the negative impact of high DEX on glucose tolerance seems to be partially prevented by AA treatment (AaDex rats).

Discussion

In the present study DEX-induced alteration in glucose tolerance was partially prevented by, but not attenuated by, oral administration of AA obtained from *C. leprosum*. The GC-excess-induced metabolic disorders, such as hypophagia, hypertriacylglyceridemia, insulin resistance and glucose intolerance, have been widely demonstrated. Further, neither DEX nor AA treatments were effective to induce hepatic oxidative stress, but all DEX-treated rats developed macrovesicular hepatic steatosis that seemed to be more pronounced when the AA is co-administered with DEX (AaDex rats).

The clear molecular mechanisms by which GCs cause glucose intolerance remain under investigation. It is well known that GC-induced glucose intolerance may result from reduced peripheral glucose disposal and/or increased hepatic glucose output. Reduction in the insulinoenic index, a parameter that indicates β-cell response to glucose, may also corroborate such disruptions in glucose tolerance both in humans and mice. AaDex rats showed no differences in AUC values compared to Aa animals, while DexAa rats were glucose intolerant compared to Aa rats. Although insulin secretion was not observed in response to elevated levels of blood glucose (during GTT experiments), it is suggested that β-cell function in AaDex animals is more preserved; these rats were able to counteract, at least partially, the glucose intolerance that was imposed by the DEX treatment. This observation may be supported by the higher serum insulin levels, as well as the insulin to glucose ratio, that was found in the AaDex rats compared to the Dex rats. Previous studies have already pointed to the positive effects of *T. arjuna* extracts on β-cell function. These authors observed a significant dose-dependent improvement of hyperglycemia in alloxan-treated rats after 30 days of oral administration of *T. arjuna* extracts. The modest effect of AA on glucose tolerance among AaDex rats could be explained by the short period of AA treatment (8 days). Whether more prolonged and/or higher concentrations of AA treatment could show better results in the present DEX model merits future studies. Since prolongation of GC treatment at
high doses cause a profound animal debility, the experimental design was restrained for 5 days GC
treatment. Moreover, the possibility that AA combined to lower doses of DEX treatment may
impact positively on GC-associated metabolism disturbances can not be excluded. It is also important
to emphasize that AA administration alone had no negative impact on glucose homeostasis (fasting
glycemia and glucose tolerance).

DexAa rats were not able to significantly counter balance the negative impact of DEX on
glucose tolerance because DexAa rats remained intolerant to glucose (AUC data), but no additive
deterioration in glucose tolerance was observed when they were compared to Dex rats. It is possible
that the short 4-day period of AA treatment was responsible for the lack of significant attenuating
effects in the DexAa group. These data indicate and reinforce the idea that AA seems to exert some
preventive rather than attenuating effects upon glucose metabolism imbalance caused by
diabeticogenic drugs. Several studies demonstrated the protective effects of T. arjuna extracts or of AA
purified from T. arjuna in hyperglycemic rat models. These studies include treatment on the
range of 7-30 days with doses varying from 20-500 mg/kg of body weight. In general, the
studies demonstrate that T. arjuna extracts and AA purified from T. arjuna act through amelioration of
oxidative stress by up-regulation of antioxidative enzymes with a consecutive increase in scavenging
action. Therefore, AA obtained from C. leprosum (30 mg/kg twice per day) seems to have a
significant protective effect against GC-induced glucose intolerance when introduced before
administration of GCs, but it fails to exert a significant attenuating effect when introduced after
initiation of GC treatment.

Effects of AA on the TG levels and liver fat content were also studied. AA treatment did not
prevent (AaDex) or attenuate (DexAa) the higher levels of serum TG that are commonly observed in DEX rats. In addition, AA treatment alone did not cause modifications in the serum TG
concentration. The TyG index, the product of the glycemia and the triacylglyceridemia values, which may indicate the degree of peripheral insulin sensitivity, revealed no preventive (AaDex) or
attenuating effect (DexAa) for AA treatment when combined to DEX treatment. While AA
may have some positive effect on β-cell function, as suggested earlier, it may, in parallel, exert a
negative impact on lipid metabolism during GC treatments. Of note, no effect of AA treatment
per se or in combination with DEX was observed for total serum TG content or hepatic TG
content. However, AaDex rats seemed to exhibit a more pronounced macrovesicular hepatic steatosis compared to Dex animals. Ectopic lipid deposition may impair insulin signaling and lead to
dispensed insulin sensitivity in the unaffected tissue. This is in accordance with the metabolic
data for DexAa. These animals demonstrated higher fasting blood glucose values compared to Aa
rats. Thus, it is probable that under basal metabolic conditions, lipid intermediate metabolism may favour higher hepatic glucose output and/or lower glucose availability in animals
that already have deterioration of glucose homeostasis due to the effects of GC. Previous studies
attributing the beneficial effects of T. arjuna extracts and AA purified from T. arjuna on
blood glucose concentration were conducted in hyperglycemic rats (induced by alloxan or streptozotocin treatment), and although this positive effect of AA can not be ruled out, caution
should be used when combining AA with hypoglycemicant hormones/drugs such as GCs.

In summary, the present data demonstrated that AA, obtained from C. leprosum, partially prevents the
glucose intolerance induced by DEX treatment when introduced before GC administration, but it fails to
produce this beneficial effect when given during GC treatment. In parallel, combination of AA with DEX
may result in a more pronounced hepatic steatosis. These data reveal the complexity of AA effects and
suggest caution when considering this phytochemical as a hypoglycemiant and/or insulin-sensitizing agent.

Acknowledgment
This study was supported by grants from the Brazilian foundations FAPESP, CNPq Instituto
Nacional de Ciência e Tecnologia: Obesidade e Diabetes. Thanks are due to Mr. Fernando
Falkenburger Melleu for support with the images acquisition and Dr. Alcir Luiz Dafré by generous
donations of reagents and support with laboratory techniques.

Disclosure
The authors declare no financial, relationship, and affiliation conflict of interest.
References

31 Longano CA & Fletcher HP, Insulin release after acute hydrocortisone treatment in mice, Metabolism, 32 (1983) 603.

32 Manna P & Sil PC. Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: Protective role of arjunolic acid, Biochimie, 94 (2012) 786.