Diheteroaromatic dianionic oxy-Cope rearrangement route to the synthesis of novel heterocyclic compounds

C A M A Huq* & S Sivakumar
Post Graduate and Research Department of Chemistry, The New College, Affiliated to the University of Madras, Chennai 600 014, India
E-mail: drmadabulhuq@yahoo.com

Received 3 July 2013; accepted (revised) 14 March 2014

This is a first instance where the π bonds of the two thiophene rings act as a 1,5-hexadiene system necessary for the oxy-Cope rearrangement. This new reaction termed by us as diheteroaromatic dianionic oxy-Cope rearrangement is used for the synthesis of novel heterocyclic compounds 4,5-diphenyl-3,6-dithia-4,5-dihydro-as-indacene-4,5-diol (2), 25. 26-dioxo-16. 23-dithiaheptacyclo [12.10. 2. 01,14.01,17.01,20.02,24.] hexacosa-2(7), 3, 5, 8(13), 9, 11, 15(19), 17, 20(24), 21 decaene (4) and 4.11-dithiapentacyclo [12.7.1. 03,7. 08,12. 018,22.] docosa-1(21), 3(7), 5, 8(12), 9, 14(22), 15, 17, 19-nonaene-2,13-dione (6), from simple starting materials.

Keywords: 2-Thiophenylmagnesium bromide, diheteroaromatic dianionic oxy-Cope rearrangement, tandem reaction, heterocyclic compounds, 1,2-diols

Oxy-Cope rearrangement is a [3,3]-sigmatropic rearrangement where the two π bonds of the 1,5 hexadiene system undergoes a [3,3]-sigmatropic shift. We have reported 1 oxy-Cope rearrangement where the two π bonds of the two aromatic rings undergoes [3, 3] sigmatropic shift. The involvement of π bond of one heteroaromatic ring is reported 2. But there is no report on the involvement of the two π bonds of two heteroaromatic rings in oxy-Cope rearrangement. Hence we report a first instance where the two π bonds of two heteroaromatic rings act as a 1,5 hexadiene system necessary for oxy-Cope rearrangement.

Results and Discussion

The diols, 1,2-diphenyl-1,2-di (thiophen-2-yl)-ethane-1,2-diol (1), 9,10-dihydro-9,10-di(thiophen-2-yl)phenanthrene-9,10-diol (3) and 1,2-dihydro-1,2-di(thiophen-2-yl)acenaphthylene-1,2-diol (5) were synthesized by the addition of 2-thiophenyl magnesium bromide to benzil, phenanthrene-9,10-dione and acenaphthene-1,2-dione respectively.

1,2-Diphenyl-1,2-di (thiophen-2-yl)ethane-1,2-diol (1) on treatment with 10 equivalents of NaH in THF at 25°C for 2 hr gave a waxy solid 2 in 79% yield (Scheme I). The TLC of the waxy solid showed a new single spot. The IR spectrum of 2 showed broad peak at 3399 cm⁻¹ for OH stretching and 1H NMR of 2 showed D₂O exchangeable signal at δ 1.7 (br, s, 2H), δ 7.15-7.21 (m, 4H) proton of thiophene rings and δ 7.49-7.91 (m, 10H) protons of the benzene ring. The 13C NMR spectrum of 2 showed signal at δ 77.29 due to >C-OH carbon. The mass spectrum showed m/z (M⁺ + 2) at 378.8216.

The mechanism of formation of 2 can be rationalized as the dianion of 1 undergoes tandem diheteroaromatic dianionic oxy-Cope rearrangement / [2+2] cycloaddition / cleavage as shown in Figure 1.

9,10-Dihydro-9,10-di(thiophen-2-yl)phenanthrene-9,10-diol (3) on treatment with 10 equivalents of NaH in THF at 25°C for 2 hr gave a waxy solid in 75% yield (Scheme II). The TLC of the waxy solid 4 showed a new single spot. The IR spectrum of 4 showed the absence of OH stretching and presence of >C-H stretching at 2957, 2922, 2853 cm⁻¹, >C=C< stretching at 1627 cm⁻¹ and >C-O stretching at 1260 cm⁻¹. The 1H NMR spectrum of 4 showed signals at δ 6.58 to 6.72 (m, 2H) due to α protons of thiophene ring, δ 6.82-6.89 (m, 2H) β-protons of thiophene ring and δ 7.0-7.77 (m, 8H), aromatic protons of the benzene ring. 13C NMR spectrum of 4 showed >C-O-carbon at δ 80.57 and the mass spectrum showed m/z (M⁺) at 372.5167.

The mechanism of formation of 4 can be rationalized as the dianion of 3 undergoes tandem diheteroaromatic dianionic oxy-Cope rearrangement / [2+2] cycloaddition / cleavage as shown in Figure 2. Similar mechanism has been reported by. Alder et al. 3
for tandem (3,3) sigmatropic rearrangement / criss-cross (2π+2π) cycloaddition.

1,2-Dihydro-1,2-di(thiophen-2-yl)acenaphthylene-1,2-diol 5 on treatment with 10 equivalents of NaH in THF at RT for 2 hr gave a waxy solid 6 in 70 % yield (Scheme III). The TLC of the product showed a single spot. The IR spectrum of 6 showed the absence of =O stretching and presence of >C=O stretching at 1712 cm$^{-1}$. The 1H NMR spectrum of 6 showed the presence of protons of thiophene ring at δ 7.10 (t, 2H) and δ 7.69 (d, 2H), the naphthalene ring protons gave signals at δ 7.51 (t, 2H), δ 7.84 (t, 2H) and δ 8.1 (d, 2H). 13C NMR spectrum of 6 showed the presence of carbonyl carbon at δ 189. The mass spectrum showed m/z (M$^+$ + 2) at 348.4871.

The mechanism of formation of 6 is shown in Figure 3. The mechanism involves a diheteroaromatic dianionic oxy-Cope rearrangement followed by air oxidation. A similar air oxidation is reported 4.

Materials and Methods

All m.ps. are uncorrected. The purity of the compounds was checked by Thin Layer Chromatography (TLC) on silica gel. 1H NMR spectra were recorded in deuteriochloroform (CDCl$_3$) using tetramethyl silane (TMS) as an internal standard on a
Bruker 300 spectrometer at 400 mega Hertz (MHz). 13C NMR spectra were recorded on a Bruker 300 spectrometer at 100 MHz and mass spectra on Jeol DX-303 spectrometer. Tetrahydrofuran was freshly distilled from sodium benzophenone ketyl before use. The reactions were carried out in a Schlenk type glass apparatus under nitrogen atmosphere.

Experimental Section

General procedure for the synthesis of compounds 2, 4 and 6

A solution of the diol (0.189 g, 0.0005 mol) in dry THF (10 mL) was added to a suspension of sodium hydride (NaH) (0.240 g, 0.005 mol) 50% dispersion in mineral oil washed with petroleum ether 60-80°C (3 × 10 mL) in dry THF (10 mL). The mixture was stirred under nitrogen atmosphere for 3 hr at RT. Then cooled and quenched with a saturated solution of ammonium chloride (10 mL). The product was extracted with diethyl ether (3 × 10 mL) and the combined organic phases were washed with brine, water then dried over anhydrous sodium sulphate.
(Na$_2$SO$_4$). On removal of the solvent a residue was obtained. TLC of which showed a single spot. Purification of the residue by column chromatography on silica gel, with [hexane-ethyl acetate (9:1)] as eluent, afforded the corresponding product 2, 4 and 6.

4,5-Diphenyl-3,6-dithia-4,5-dihydro-asindacene-4,5-diol, 2. A waxy solid. Yield 79%, IR (KBr): 3399 (-OH str.), 2948, 2842, (>C-H str.), 1651 cm$^{-1}$ (>C=C< str.); 1H NMR (400 MHz, CDCl$_3$/TMS): δ 1.7 (br, s, 2H, D$_2$O exchangeable-OH proton), 7.15-7.21 (m, 4H, protons of the thiophene ring), 7.49-7.91 (m, 10H, protons of the benzene ring); 13C NMR (100 MHz, CDCl$_3$): δ 77.29 (2C), 127.95 (2C), 128.12 (4C), 128.42 (2C), 129.18 (2C), 130.06 (4C), 132.27 (2C), 138.17 (2C), 143.65 (2C). Mass spectrum: m/z (M$^+$) 378.8216. Anal. Found: C, 70.19; H, 4.23; S, 17.01. Calcd. for C$_{22}$H$_{16}$O$_2$S$_2$: C, 70.21; H, 4.25; S, 17.02%.

25. 26–Dioxa-16. 23–dithiaheptacyclo [12.10. 0$^{1,14,17,0^{13,15,19,0^{30,24}}}$] hexacosa–2(7), 3, 5, 8(13), 9, 11, 15(19), 17, 20(24), 21 decaene, 4. A waxy solid. Yield 75%, IR (KBr): 2957, 2924, 2853 (>C-H str.), 1627 cm$^{-1}$ (>C=C< str); 1H NMR (400 MHz CDCl$_3$/TMS): δ 6.58-6.72 (m, 2H, α-protons of the thiophene ring), 6.82-6.89 (m, 2H, β-protons of the thiophene ring), 7.0-7.77 (m, 8H, protons of the benzene ring); 13C NMR (100 MHz, CDCl$_3$): δ 80.57 (2C), 126.7 (2C), 126.98 (2C), 128.03 (2C), 128.85 (4C), 128.93 (2C), 131.49 (2C), 136.29 (2C), 140 (2C), 145 (2C); Mass spectrum: m/z (M$^+$) 372.5167. Anal. Found: C, 70.92; H, 3.20; S, 17.19. Calcd. for C$_{22}$H$_{12}$O$_2$S$_2$: C, 70.96; H, 3.22; S, 17.20%.

4.11-Dithiapentacyclo [12.7.1. 0$^{3,7,0^{12,18,22}}$] docosa-1(21), 3(7), 5, 8(12), 9, 14(22), 15, 17, 19-nonaene-2,13–dione, 6. A waxy solid. Yield 70%, IR (KBr): 3005, 2925, 2855 (>C-H str.), 1712 cm$^{-1}$ (>C=O str.); 1H NMR (400 MHz, CDCl$_3$/TMS): δ 7.1 (quartet, J = 4 Hz, 2H, α-protons of the thiophene ring), 7.51 (t, J = 7.5 Hz, 2 H, protons of the naphthalene ring), 7.69 (dd, J = 19 Hz, 8 Hz, 2 H, β-protons of the thiophene ring), 7.84 (dd, J = 15.5 Hz, 7 Hz, 2 H, protons of the naphthalene ring), 8.1 (d, J = 7.5 Hz, 2 H, peri protons of the naphthalene ring); 13C NMR (100 MHz, CDCl$_3$): δ 125 (2C), 127 (2C), 132, 140 (2C), 145 (2C), 149 (2C), 159 (2C), 169 (2C), 170 (2C), 171 (2C), 172 (2C).

![Scheme III](image-url)
Conclusion

In conclusion, our work is the first instance where the two π bonds of two heteroaromatic rings act as a 1, 5 hexadiene system necessary for oxy-Cope rearrangement, which leads to the synthesis of novel heterocyclic compounds from simple starting materials.

Acknowledgement

The authors thank the management of The New College, Chennai, India, for providing the necessary facilities and support. Thanks are also due to SAIF, IIT Chennai, India, for recording spectral data.

References