CONCLUSION

K.A. Isaac

[Reviews the articles in this series, which have as back-ground the principles of dialectics laid down by Dr. Ranganathan in his Introductory article to the series].

The object of this series was laid down in his Introductory article by Dr. Ranganathan (Abgila 2, 1952, 7). The subsequent nine articles by me are believed to have adequately demonstrated the advantages of adherence to the principles recommended by him. These articles are also considered to have fulfilled adequately the intention of the series. It is therefore thought unnecessary to continue it further.

1 Terminology

The need for precision of language in scientific discourse cannot be too strongly emphasised. Vagueness of language may be a convenience in politics. But it is unhelpful in science. Homonyms and synonyms are mainly responsible for vagueness. They should be given no place in scientific exposition. There should be one and only one way of interpreting a sentence. This points to the need for an international code of terminology in each subject. Unfortunately there is yet no such standardisation of terminology in Library Science. In its absence clarity is often vitiated. A statement may be clear to one person used to one code of terminology. It may not be clear to another used to a different code. To take an example, the term “Main Class” has different denotations in DC and UDC. In the former it stands for the “First summary” of classes. In the latter it stands for all the enumerated classes in all the schedules. It is thus a homonym for a person using both the schemes. Again in the Udc the words “Sequence”, “Order”, “Arrangement” and “Series” are used to denote one and the same idea. They are thus synonyms. In my articles, I have consistently used the word
Sequence” in their place. The use of the words “Synthetic”, “Analytic”, “Compound”, etc. also demonstrates the unhelpfulness of the absence of an international terminology. I have adhered to Ranganathan’s terminology.

2 Unity

Another factor contributing to clarity is unity in the idea and verbal planes. I have laid emphasis on this all along. A sentence without unity can be compared to a chemical compound. A conglomerate will perplex a chemist as to its constituent elements. So also a sentence without unity will perplex a reader. The chemist must first use, perhaps, physical methods to separate out the different substances in the conglomerate. So also the sentence has to be first subjected to a mental process of analysis in order to separate out the unit-constituents. This involves time—often of the very essence to a scientific worker. Take, for example, the sentence “On the other hand classifications which have initially been designed to meet a specific practical purpose are nearly always found to have a reasonably logical sequence, and to be readily adaptable to other purposes, provided the latter are not too remote in characteristic from the original function for which the classification was designed.” (Udc 1,1,3, section I, para 1). In the form as amended by me it reads.— “No scheme of classification can serve all purposes. It varies with purpose. A slight change in purpose requires only a slight change in the scheme of classification (Agila 2,8,275-78).

3 Avoidance of Ellipsis

Yet another prerequisite to clarity is explicitness. Nothing should be left implied in an ellipsis in a sentence. Consider the sentence “The main element of the notation of UDC is the series of indeterminate, infinitely extended decimal fractions.” (Udc 1,1,3, section 3, para I). The steps in argument leading to the conclusion of “decimal fractions being indeterminate” are left to the reader to be filled up. The sentence is thus elliptical. Clarity demands the explicit statement of the premises assumed. Its amended form, with the ellipsis filled up, is as follows:—

“The basic attributes of the notation of the UDC is its consisting of decimal fractions. Each decimal fraction is used to represent
one and only one class. Each class is represented by one and only one decimal fraction. The number of classes in the universe of knowledge is indeterminate. Hence the number of decimal fractions in the notation of the UDC is indeterminate. Each decimal fraction is infinitely extensible". \((Abgila\ 3,3,\ 113-17) \).

4 Clarity vs Parsimony

True that sometimes clarity can be secured only at the expense of parsimony to some extent. In the choice between clarity and parsimony, clarity should be undoubtedly upheld. The Law of Parsimony has been given due deference in this series of articles in other contexts.

For example, tautological sentences and words have been consistently deleted, out of deference to that Law.

5 Illustration

I close by citing below the continuation of the passage quoted above and its amended version:—

Text. "This series has the following useful characteristics.

"It is universally understood, and its members are commonly understood in all parts of the world.

"The members are infinite in number and are arranged in order so that between any pair, an infinite number of new members can be intercalated without affecting the order of the original members of the series. On the other hand the series can be restricted in use in any desired extent, e.g., to those members containing not more than one, two, three, four, etc. digits. In practice convenience dictates the restriction of the members to those possessing no more digits than can be readily assembled in the mind and transcribed on to paper."

Amended version. "The notation of decimal fractions has the following attributes. They are useful.

"The indeterminateness of the number of decimal fractions is understood by many. The infinite extensibility of the decimal fractions is also understood by many. The decimal fractions are commonly used in many parts of the world.

"In the notation of the UDC decimal fractions are arranged in the ascending sequence of their ordinal values. They can be infinite
in number. Between two consecutive decimal fractions an infinite number of new decimal fractions can be interpolated. This interpolation does not alter the sequence of the decimal fractions existing before the interpolation.

"Each decimal fraction in the sequence can be restricted to have not more than a specified number of digits, e.g. one, two, three, four, etc. digits.

"The number of decimal fractions in the sequence will thereby be restricted. No more than a certain number of digits can be readily assembled in mind. No more than a certain number of digits can be readily transcribed on to paper. Convenience, thus, dictates the restriction of decimal fraction to those possessing such number of digits".