
Indian Journal of Engineering & Materials Sciences 

Vol. 15, October 2008, pp. 382-390 

 

 

 

 

 

 

Micromechanical analysis of FRP hybrid composite lamina for 

in-plane transverse loading 
 

K Sivaji Babu
a
*, K Mohana Rao

b
, V Rama Chandra Raju

c
, V Bala Krishna Murthy

d 
& M S R Niranjan Kumar

e
 

aDepartment of Mechanical Engineering, V R Siddhartha Engineering College, Vijayawada 520 007, India 

bC R Reddy Engineering College, Eluru 534 007, India 

cJ N T University, Vizayanagaram 535 002, India 

dDepartment of Mechanical Engineering, P.V.P. Siddhartha Institute of Technology, Vijayawada 520 007, India 

eDepartment of Production Engineering, V.R. Siddhartha Engineering College, Vijayawada 520 007, India 

Received 9 September 2007; accepted 19 June 2008 

In this paper, the micromechanical behaviour of the square unit cell of a hybrid fiber reinforced composite lamina 

consisting of graphite and boron fibers embedded in epoxy matrix, has been studied. A three-dimensional finite element 

model with governing boundary conditions has been developed from the unit cells of square pattern of the composite to 

predict the Young’s modulus (E2) and Poisson’s ratios (ν21 and ν23) of graphite-boron hybrid fiber reinforced lamina for 

various volume fractions. The stresses at the fiber-matrix interfaces induced due to the in-plane transverse loading, that is 

applied to predict the in-plane transverse Young’s modulus (E2) and the associated Poisson’s ratios, are also determined 

from these models. The finite element software ANSYS has been successfully executed to evaluate the properties and 

stresses. The variation of the stresses at the fiber-matrix interface with respect to the angular location is discussed. The 

Young’s modulus is found to be increasing with Vf indicating that the stiffness of the composite increases with Vf , The 

magnitude of the normal stresses at the fiber matrix interface are maximum at θ = 0° as the direction of the load is normal to 

the surface at this location. This may result in the separation of fiber and matrix leading to debonding. This analysis is useful 

to realize the advantages of hybrid fiber-reinforced composites in structural applications, and to identify the locations with 

reasons where the stresses are critical to damage the interface. 
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Fiber reinforced composites can be tailor made, as 

their properties can be controlled by the appropriate 

selection of the substrata parameters such as fiber 

orientation, volume fraction, fiber spacing, and layer 

sequence. The required directional properties can be 

achieved in the case of fiber reinforced composites by 

properly selecting various parameters enlisted above. 

As a result of this, the designer can have a tailor-made 

material with the desired properties. Such a material 

design reduces the weight and improves the 

performance of the composite. For example, the 

carbon-carbon composites are strong in the direction 

of the fiber reinforcement but weak in the other 

directions. Elastic constants of fiber reinforced 

composites with various types of constituents were 

determined by Chen and Chang
1
, Hashin and Rosen

2
, 

Hashin
3
 and Whitney

4
. 

 It is clear from the above predictions, i.e., elastic 

constants of fiber-reinforced composites, that four of 

the five independent composite constants (E1, E2, ν12, 

G12 and G23) differ only in their expressions for the 

fifth elastic constant, i.e., transverse shear modulus, 

which varies between two bounds that are reasonably 

close for the cases of practical interest. The values of 

elastic Moduli presented by Hashin and Rosen
2
 have 

very close bounds. Ishikawa et al.
5 

experimentally 

obtained all the independent elastic Moduli of 

unidirectional carbon-epoxy composites with the 

tensile and torsional tests of co-axis and off-axis 

specimens. They confirmed the transverse isotropy 

nature of the graphite-epoxy composites. Hashin
6
 

comprehensively reviewed the analysis of composite 

materials with respect to mechanical and materials 

point of view. Expressions for E1 and G12 are derived 

using the theory of elasticity approach
7
.  

 

Micromechanics 

 Micromechanics is intended to study the 

distribution of stresses and strains within the micro 

regions of the composite under loading. This study 

will be particularized to simple loading and geometry 

for evaluating the average or composite stiffnesses 
_________ 
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and strengths of the composites
7,8

. Micromechanics 

analysis can be carried theoretically using the 

principles of continuum mechanics, and 

experimentally using mechanical, photo elasticity, 

ultrasonic tests, etc. The results of micromechanics 

will help to (i) understand load sharing among the 

constituents of the composites, microscopic structure 

(arrangement of fibers), etc., within composites, (ii) 

understand the influence of microstructure on the 

properties of composite, (iii) predict the average 

properties of the lamina, and (iv) design the materials, 

i.e., constituents volume fractions, their distribution 

and orientation, for a given situation. 

 The properties and behaviour of a composite are 

influenced by the properties of fiber and matrix, 

interfacial bond and by its microstructure. 

Microstructural parameters that influence the 

composite behaviour are fiber diameter, length, 

volume fraction, packing and orientation of fiber. A 

closed form micromechanical equation for predicting 

the transverse modulus (E2) of continuous fiber 

reinforced polymers is presented
9
. 

 Anifantis
10

 predicted the micromechanical stress 

state developed within fibrous composites that contain 

a heterogeneous inter phase region by applying finite 

element method to square and hexagonal arrays of 

fibers. Sun et al.
11

 established a vigorous mechanics 

foundation for using a representative volume element 

(RVE) to predict the mechanical properties of 

unidirectional fiber composites. Li
12

 has developed 

two typical idealized packing systems, which have 

been employed for unidirectional fiber reinforced 

composites, viz., square and hexagonal ones to 

accommodate fibers of irregular cross sections and 

imperfections asymmetrically distributed around 

fibers. To understand the mechanism of the ‘hybrid 

effect’ on the tensile properties of hybrid composites 

Qiu and Schwartz
13

 investigated the fiber/matrix 

interface properties by using single fiber pull out from 

a micro composite (SFPOM) test, which showed a 

significant difference between the interfacial shear 

strength of Kevlar fiber/epoxy in single fiber type and 

that in the hybrid at a constant fiber volume fraction, 

which shortened the ineffective length and 

contributed to the failure strain increase of Kevlar 

fibers in the hybrid. Mishra and Mohanthy et al.
14

 

investigated the degree of mechanical reinforcement 

that could be obtained by the introduction of glass 

fibers in bio fiber (pineapple leaf fiber/sisal fiber) 

reinforced polyester composite experimentally. 

Addition of relatively small amount of glass fiber to 

the pineapple leaf fiber and sisal fiber reinforced 

polyester matrix enhanced the mechanical properties 

of the resulting hybrid composites. The works 

reported in the available literature do not include the 

micromechanical analysis of hybrid FRP lamina using 

FEM. The present work aims do develop a 3-D finite 

element model for the micromechanical analysis of 

hybrid composite lamina. 

 
Square array of unit cells 

 A schematic diagram of the unidirectional fiber 

composite is shown in Fig. 1 where the fibers are 

arranged in the square array. It is assumed that the 

fiber and matrix materials are linearly elastic. A unit 

cell is adopted for the analysis. The cross sectional 

area of the fiber relative to the total cross sectional 

area of the unit cell is a measure of the volume of 

fiber relative to the total volume of the composite. 

This fraction is an important parameter in composite 

materials and is called fiber volume fraction (Vf). 

 
Problem statement 

 The analysis deals with the evaluation of the in-

plane transverse Young’s modulus E2, Poison’s ratios 

ν21, ν23 and determination of the stresses at the fiber-

matrix interfaces for a complete possible range of 

fiber volume fractions using 3-D finite element 

analysis based on theory of elasticity. 

 
Finite element model 

 The 1-2-3 coordinate system shown in Fig. 2 is 

used to study the behavior of unit cell. The isolated 

 
 

Fig. 1 — Concept of unit cells 
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unit cell behaves as a part of large array of unit cells 

by satisfying the conditions that the boundaries of the 

isolated unit cell remain plane.  

 It is assumed that the geometry, material and 

loading of unit cell are symmetric with respect to 1-2-

3 coordinate system. Therefore, a one-fourth portion 

of the unit cell is modeled for the analysis (Fig. 3). 

 The dimensions of the finite element model are 

taken as (i) X=100 units (in-plane Transverse 

direction), (ii) Y=200 units (out-of-plane transverse 

direction) and (iii) Z=10 units (fiber direction). 

 The radius of fiber is varied corresponding to the 

volume fraction. For example, the radius of the fiber 

is calculated as 61.8 units, so that the fiber volume 

fraction becomes 0.30. 

 The element used for the present analysis is SOLID 

95 of ANSYS software
15

 which is developed based on 

three-dimensional elasticity theory and is defined by 

20 nodes having three degrees of freedom at each 

node: translation in the node x, y and z directions. 

 The properties of the constituent materials used for 

the present analysis are given in Table 1. Uniform 

tensile load of 1 MPa is applied on the area at X = 100 

units. 

 Due to the symmetry of the problem, the following 

symmetric boundary conditions are used 

 

at x = 0, Ux = 0 

at y = 0, Uy = 0 

at z = 0, Uz = 0 

 

In addition the following multi point constraints are 

used. 
 

The Ux of all the nodes on the line at x =100 is same 

The Uy of all the nodes on the line at y =200 is same 

The Uz of all the nodes on the line at z = 10 is same 

 

Results and Discussion 

 The mechanical properties of the lamina are 

calculated using the following expressions. Young’s 

modulus in in-plane transverse direction is determined 

using the formula 
 

2

2

2

E
σ

=
ε

 

 

where σ2 is the stress in 2-direction (X) which is same 

as the pressure load applied in transverse direction. ε2 

is the strain in 2-direction (X) calculated from the 

displacement of the model in 2-direction obtained 

from finite element analysis.  

 Poisson’s ratios are determined from the following 

equations 
 

2

3
23

2

1
21 ;

ε

ε
=

ε

ε
= vv 1

2

−ε

ε
 

 

where ε1, ε2 and ε3 are the strains in longitudinal, in-

plane transverse and out-of-plane transverse 

directions of the model respectively in the 

 
 

Fig. 2 — Isolated unit cell of square packed array 

 

 
 

Fig. 3 — Finite element mesh on one-fourth portion  

of the unit cell 

Table 1 — Properties of constituents7 

 

Material E (GPa) Ν 
 

G (GPa) 

Graphite fiber E1 =233 

E2 =23.1 

E3 =23.1 

ν12 = 0.2 

ν13 = 0.2 

ν23 = 0.4 

G12 = 8.96 

G13 = 8.96 

G23 = 8.27 
 

Boron fiber 400 0.2  —  
 

Epoxy matrix  4.62 0.36  —  
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corresponding directions and are calculated from the 

displacements obtained from the finite element 

analysis. 

 Sufficient numbers of convergence tests are made 

and the present finite element model is validated by 

comparing the Young’s modulus of FP-Al lamina 

predicted with the value from the available literature
16

 

and found close agreement (Fig. 4). Figure 5 presents 

the mechanical properties predicted from the present 

analysis. Later the finite element models are used to 

evaluate the properties E2, ν21, ν23 and the stresses at 

the fiber matrix interface of a hybrid composite with 

boron and graphite fibers.  

 
Variation of young’s modulus (E2) with respect to volume 

fraction 

 It is observed that there is a linear increment of the 

young’s modulus with respect to volume fraction for 

all the three combinations up to Vf = 45%. For Vf from 

45% to 60% the young’s modulus increases at a slow 

rate. For Vf between 60% and 75% it increases at 

faster rate for boron-epoxy and hybrid-epoxy 

composites. This is because the stiffness of the 

composite increases with increase in Vf. The young’s 

modulus of boron-epoxy at all the volume fractions is 

observed to be maximum followed by hybrid-epoxy 

and graphite-epoxy, due to the less value of graphite 

fiber transverse modulus when compared with boron 

fiber modulus. (Fig. 5) 

 
Variation of Poisson’s ratio (ν21 and ν23) with respect to 

volume fraction 

 The Poisson’s ratio (ν21) decreases from Vf =15% to 

45%, and later increases for boron-epoxy and hybrid-

epoxy. For graphite-epoxy it shows a decreasing trend 

throughout. (Fig. 6) 

 The Poisson’s ratio (ν23) gradually decreases with 

the increase in volume fraction for all the three 

combinations (Fig. 7). The rate of decrease is more 

for boron-epoxy followed by hybrid-epoxy. 

 The following stresses are computed at the fiber-

matrix interface (Fig. 8): (i) σ
f
n = normal stress in the 

fiber at the interface, (ii) σ
m

n = normal stress in the 

matrix at the interface, (iii) τ
f
ns = shear stress in the 

fiber at the interface, (iv) τ
m

ns = shear stress in the 

 
 

Fig. 4 — Variation of Young’s modulus (E2) with respect to 

volume fraction 
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Fig. 5 — Variation of Young’s Modulus (E2) with respect to 

volume fraction 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.15 0.3 0.45 0.6 0.75

Volume Fraction (Vf)

ν
2

1
 

 boron-epoxy

 graphite-epoxy
Hybrid-epoxy

 
 

Fig. 6 — Variation of Poisson’s ratio (ν21) with respect to volume 

fraction 
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Fig. 7 — Variation of Poisson’s Ratio (ν23) with respect to volume 

fraction 
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matrix at the interface, (v) σ
f
c = circumferential stress 

in the fiber at the interface, (vi) σ
m

c = circumferential 

stress in the matrix at the interface, (vii) σ
f
1 = fiber 

directional stress in the fiber at the interface and (Viii) 

σ
m

1 = fiber directional stress in the matrix at the 

interface 
 

Analysis of stresses at the interfaces  

 The results are normalised with the applied 

pressure, i.e., the uniform tensile load applied in the 

in-plane transverse direction (2-direction). Figures 9 

and 10 show the variation of normal stress in fiber 

and matrix at the interface with respect to θ at the 

bottom and top interfaces respectively. Here θ is the 

angle measured simultaneously from bottom of the 

finite element model in counter clockwise direction 

for the bottom interface, and from top of the unit cell 

in clockwise direction for the top interface. For all the 

values of Vf the normal stress is tensile up to θ = 70°
 

and is compressive between θ = 70°
 
and

 
θ = 90°. The 

magnitude of the stress is observed to be maximum at 

θ = 0° for all volume fractions. This is because at this 

location the applied force is normal to the interface. It 

is observed that the maximum stress decreases with 

increase in Vf. This is due to the reason that the 

resistance at the interface increases with increase in 

volume fraction. 
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Fig. 9 — Variation of σn with respect to θ (bottom interface) 
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Fig. 10 — Variation of σn with respect to θ (top interface) 

 
 

Fig. 8 — Unit cell showing the stresses at the interface and boundaries 
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 The variation of the shear stress at the bottom 

interface in the constituent materials with respect to θ 

is shown in Fig. 11. The magnitude of the shear stress 

is observed to be maximum at θ = 45°
 
for volume 

fractions of 15% and 30%. For Vf = 45% and 75% 

stress is maximum at θ = 54°. For Vf = 60% this stress 

is maximum at θ = 63°.
 
From the curves, it can be 

observed that the shearing action between the 

constituents is zero at the start and end values of θ and 

maximum at various locations for different values of 

Vf. The deviation of the maximum stress locations at 

higher volume fractions may be due to the effect of 

constraints imposed on boundaries of the FE model. It 

is also observed that the magnitude of maximum 

shear stress decreases with increase in Vf. This is due 

to the reason that the resistance at the interface 

increases with increase in volume fraction. 

 The variation of the interface shear stress at the top 

interface in both the constituent materials with respect 

to θ is shown in Fig. 12. The magnitude of the shear 

stress is observed to be maximum at θ = 45°
 
for 

volume fractions of 15% and 30%. The shear stress is 

observed to maximum at θ = 27°,18° and 9° for 

volume fractions of 45%, 60% and 75% respectively.
 

It is observed that the magnitude of the maximum 

shear stress decreases with increase in Vf. The reasons 

for the variation of stresses at top interface are similar 

to that discussed at the bottom interface. From Figs 11 

and 12 it is noticed that the stresses are more at top 

interface. This is due to the high stiffness of boron 

fiber causing for higher reaction forces at the interface 

in shear.  

 Figure 13 shows the variation of interface 

circumferential stress at the bottom interface in the 

fiber material with respect to θ. The stresses are 

observed to be tensile for Vf
 
= 45%, 60% and 75%. 

For Vf = 15% the stress is observed to be compressive 

up to θ = 18° and is tensile in between 18°
 
and 90°. 

For Vf = 30% the stress is observed to be compressive 

up to θ = 12° and is tensile in between 12° and 90°. 

The magnitude of the circumferential stress is 

observed to be maximum at θ = 90° for Vf from 15% 

to 60% . For Vf = 75% it is maximum at θ = 0°. The 

magnitude of the maximum circumferential stress 

decreases with increase in Vf. For lower volume 

fractions, the fiber surface at θ = 0°
 
is subjected 

compression due to the action of matrix. As the angle 

θ increases, the matrix will try to pull the fiber surface 

and the stress will be tensile. As the volume fraction 

increases, the action of matrix decreases resulting in 

the reduction of magnitude of maximum stress and 

the stresses are positive for all the values of θ.  

 Figure 14 shows the variation of interface 

circumferential stress at the top interface in the fiber 

material with respect to θ. The stresses are observed 

to be compressive between θ = 0°
 
to

 
θ = 18°

 
and then

 

tensile in between θ = 18°
 
to θ = 90°

 
for Vf = 15%. For 

Vf =30% this stress is compressive up to θ = 12° and 

then tensile between θ = 12°
 
to 90°

 
. For Vf = 45%, 

60% and 75% the stresses are observed to be tensile 
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Fig. 11 — Variation of τns with respect to θ (bottom interface) 
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Fig. 12— Variation of τns with respect to θ (top interface) 
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Fig. 13 — Variation of σf
c with respect to θ (bottom interface) 
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for all the values of θ. The magnitude of the 

circumferential stress is observed to be maximum at θ 

= 90°
 
for volume fractions of 15%, 30%

 
and 45%. For 

Vf = 60% the stress is maximum at θ = 36° and for
 
Vf 

= 75% this stress is maximum at θ = 0°
 

The 

magnitude of
 

maximum circumferential stress 

decreases with increase in Vf up to 60% and for Vf = 

75% it increases. At higher volume fractions, the 

tensile force applied in 2-direction causes contraction 

of the unit cell in 3-direction. This effect is more for 

matrix than in fiber. As a result the matrix tries to pull 

the fiber in 3-direction causing for positive stresses 

even to maximum at lower values of θ. The reasons 

for other variations are similar to that explained at 

bottom interface. 

 Figure 15 shows the variation of interface 

circumferential stress at bottom interface in the matrix 

material with respect to θ. The stresses are observed 

to be tensile for Vf = 15%, 30% and 45% for all the 

values of θ. For Vf = 60% the stress is observed to be 

tensile up to θ = 81° and is compressive in between 

81° and 90°. For Vf = 75% the circumferential stress 

is observed to be tensile up to θ = 72° and is 

compressive in-between 72° to 90°. The magnitude of 

the circumferential stress is observed to be maximum 

at θ = 0° for all volume fractions. The magnitude of 

the maximum circumferential stress decreases with 

increase in Vf.  

 Figure 16 shows the variation of interface 

circumferential stress at top interface in the matrix 

material with respect to θ. The stresses are observed 

to be tensile for all Vf up to θ = 72°
 

and it is 

compressive in between θ = 72°
 
and 90°. The stresses 

are observed to be maximum at θ = 0°
 
for all the 

volume fractions. The magnitude of the maximum 

circumferential stress increases with increase in Vf. As 

explained at Fig. 14, application of tensile force in 2-

direction causes contraction of the unit cell in 3-

direction. up to certain value of θ the circumferential 

stresses will setup due to the mismatch of the 

Poisson’s ratios in the fiber and matrix materials. 

Since the mismatch is more between boron and epoxy 

than the graphite and epoxy, higher values of stresses 

are noticed at top interface than at bottom interface.  

 The variation of interfacial longitudinal normal 

stress at bottom interface in the fiber is shown in  

Fig. 17. The stresses are compressive in nature for all 

the values of θ and Vf. The magnitude of the stress is 
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Fig. 14 — Variation of σf
c with respect to θ (top interface) 
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Fig. 15 — Variation of σm
c with respect to (bottom interface) 
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Fig. 16 — Variation of σm
c with respect to (top interface) 
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Fig. 17 — Variation of σf
1 with respect to θ (bottom interface) 
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observed to be maximum at θ = 90°
 
for all volume 

fractions.
 

It is observed that the maximum stress 

decreases with increase in volume fraction.  

 The variation of interfacial longitudinal normal 

stress at top interface in the fiber is shown in Fig. 18. 

The stresses are compressive for Vf =15%, 30%, 45% 

for all values of θ. For Vf = 60% this stress is tensile 

up to θ = 18°
 
and is compressive in between θ = 18°

 
to

 

90°. For Vf =75%, this stress is observed to be tensile 

up to θ = 27° and is compressive in between θ = 27° 

to θ = 90°
.
 The magnitude of

 
stress

 
is observed to be 

maximum at θ = 90° for Vf =15%, 30%, 45% and 

60%. For Vf = 75% this stress is maximum at θ = 0°. 

The magnitude of the interfacial longitudinal normal 

stress decreases with increase in Vf except for Vf = 

75%. 

 The variation of interfacial longitudinal normal 

stress at bottom interface in the matrix is shown in 

Fig. 19. The stresses are tensile in nature for all the 

values of Vf up to θ = 72° and is compressive between 

θ = 72° to 90
0
. The magnitude of the stress is 

observed to be maximum at θ = 0°. It is observed that 

the maximum stress decreases with increase in Vf . 

 The variation of interfacial longitudinal normal 

stress at top interface in the matrix is shown in Fig. 

20. The stresses are tensile in nature for all the values 

of Vf up to θ = 72°
 
and is compressive in between θ = 

72° to 90
0
. The stresses are observed to be maximum 

at θ = 0° for all the volume fractions. The magnitude 

of the interfacial longitudinal normal stress increases 

with the increase in volume fraction.  

 The main reason for the longitudinal stresses at the 

interfaces is the mismatch of the Poisson’s ratios in 

the constituents (Figs 16-20). The matrix tries to 

compress the fiber causing for compressive stresses in 

fiber and tensile stresses in matrix at the interface. As 

the volume fraction increases, the action of the matrix 

decreases resulting in the reduction of the stresses. 

Since the mismatch is more at the top interface, the 

stresses at this interface are more than that at the 

bottom interface. Any deviations other than above are 

due to the effect of constraints imposed on the 

boundaries of the unit cell.  
 

Conclusions 
 The micromechanical behaviour of hybrid FRP 

lamina has been studied using finite element method. 

The Young’s modulus E2 and Poisson’s ratios ν21 and 

ν23 are predicted for different fiber volume fractions. 

The stresses at the fiber-matrix interface are also 

computed. The following conclusions are drawn. 
 

(i) The Young’s modulus is found to be increasing 

with Vf indicating that the stiffness of the 

composite increases with Vf . 

(ii) The Poisson’s ratios (ν23) decreases with the 

increase in volume fraction for all the three 

combinations.  
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Fig. 18 — Variation of σf
1 with respect to θ (top interface) 
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Fig. 19 — Variation of σm
1 with respect to θ (bottom interface) 
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Fig. 20 — Variation of σm
1 with respect to θ (top interface) 
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(iii) The magnitude of the normal stresses at the fiber 

matrix interface are maximum at θ = 0° as  

the direction of the load is normal to the surface 

at this location. This may result in the separation 

of fiber and matrix leading to debonding. 

(Figs 9 and 10). 

(iv) The magnitude of the shear stress is observed to 

be maximum at θ = 45° in many cases indicating 

that the interfacial damage may occur at these 

locations. (Figs 11 and 12). 

(v) The magnitude of circumferential stresses in the 

fiber material is observed to be maximum at  

θ = 90°
 
for lower volume fractions and at θ = 0° 

for higher volume fractions. These are due to the 

reasons of load in 2-direction and mismatch in 

Poisson’s ratios respectively. This may result in 

the failure of the fiber at these locations.  

(Figs 13 and 14). 

(vi) The circumferential stress of matrix material is 

found to be maximum at θ = 0°. This is due to 

the mismatch in Poisson’s ratios. This indicates 

that the failure of the matrix may originate at 

this location. (Figs 15 and 16). 
 

 The present analysis is useful to identify the hybrid 

effect in selecting the materials for reasonable 

properties. It is also useful to identify the locations 

where the failure of the interface takes place and that 

can be modeled as an imperfection for obtaining the 

properties of the composite with fiber-matrix interface 

debond. 
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