Crystallization kinetics of \(\text{Ni}_x \text{Ti}_{100-x} \) \((x=35,40)\) glasses before and after high energy heavy ion irradiation

Rohit Jain\(^1\), N S Saxena\(^1\), Deepika Bhandari\(^1\) & S K Sharma\(^2\)

\(^1\)Condensed Matter Physics Laboratory, Department of Physics, University of Rajasthan, Jaipur 302 004
\(^2\)Department of Physics, MNIT Jaipur

Received 3 February 2003; accepted 8 May 2003

Non-isothermal crystallization process in amorphous alloys \(\text{Ni}_x \text{Ti}_{100-x} \) and \(\text{Ni}_{40} \text{Ti}_{60} \) before and after high energy heavy ion irradiation with 150 MeV \(\text{Ni}^{11} \) ions have been investigated using differential scanning calorimetry (DSC). The alloys have been irradiated with fluences varying between \(1 \times 10^{11} \) and \(1 \times 10^{13} \) ions/cm\(^2\). DSC traces have been analyzed in terms of activation energy for crystallization, Avrami exponent dimensionality of growth by using four different models viz. Kissinger equation [J Res NBS, 57 (1956) 217], Ozawa equation [Bull Chem Soc Jpn, 35 (1956) 881], Matusita equation [J Mater Sci, 19 (1986) 291] and Gao and Wang equation [J Non-Cryst Solids, 87 (1980) 129]. No effect of high ion irradiation of above mentioned energy, on the crystallization kinetics has been found.

[Keywords: Amorphous alloys, Crystallization, Crystallization kinetics, Glasses]

1 Introduction

There is considerable interest in two-component metallic glasses, both as regards their basic physical properties and industrial applications. Technological applications of metallic glasses require that such materials should be thermally stable with time and temperature during use. Scientifically, the kinetics of crystallization is equally important in understanding the atomic processes involved in the formation of crystalline phases. The thermal stability of amorphous alloys can be defined as the resistance to crystallization and is given in terms of the onset crystallization temperature.

Ion beam assisted techniques for the preparation and characterization of metastable alloys are now quite widely used. Fast ions in matter lose their energy predominantly via two mechanisms; nuclear energy loss and electronic energy loss. For fast heavy ions the density of electronic excitations and ionization becomes so high that new and collective effects arise\(^1,2\).

Thus, investigations have been made to study the crystallization kinetics of \(\text{Ni}_x \text{Ti}_{100-x} \) \((x=35,40)\) amorphous alloys before and after high energy heavy ion irradiation at different fluences. The obtained DSC traces have been analysed in terms of thermal stability, activation energy, dimensionality of growth and frequency factor. Finally, a comparative study has been made in order to see the effect of irradiation.

2 Experimental Details

Specimens, each of suitable size \((1 \times 1 \text{cm}^2)\) were cut from amorphous ribbon of \(\text{Ni}_x \text{Ti}_{100-x} \) \((x=35,40)\), produced by the melt spinning technique. Specimens were cleaned ultrasonically prior to the experiment. The samples were irradiated with \(\text{Ni}^{11} \) ion beam of 150 MeV energy at different fluences at Nuclear Science Centre (NSC), New Delhi (India). The amorphous nature of the samples was confirmed by X-ray diffraction before and after irradiation.

Differential scanning calorimetry (DSC) study was performed on Rigaku 8230 B attached with thermal analysis station (TAS) at five scanning rates; 5, 7, 10, 15 and 20 K min\(^{-1}\). The samples of masses of approximately
3 mg were continuously heated from room temperature to 973 K in dry nitrogen atmosphere. The instrument was calibrated prior to measurement by using high purity metal standard with known latent heat. The calibration and measurements of alloys were carried out using identical conditions for better accuracy.

3 Results and Discussion

Typical DSC traces of both glasses at the heating rates of 10K/min are shown in Fig.1.

It is evident from the figure that both the glasses crystallize into a single stage. The characteristic temperatures (T_c and T_p) both increase with the increase of Ni content. The values of T_c and T_p of both the glasses at all the heating rates employed here are reported in Table 1.

![DSC thermogram of Niₓ-Ti₁₋ₓ glasses at a heating rate of 10 K/min](image)

Table 1 — Onset-crystallization temperatures and peak crystallization temperatures obtained at different heating rates.

<table>
<thead>
<tr>
<th>System</th>
<th>On-set crystallization temperature T_c(K) Heating rate (K/min)</th>
<th>Peak crystallization temperature T_p(K) Heating rate (K/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niₓ,Ti₁₋ₓ</td>
<td>690.1 693.3 699.1 702.1 706.2</td>
<td>719.4 723.1 725.4 730.0 735.0</td>
</tr>
<tr>
<td>Ni₄₀,Ti₆₀</td>
<td>745.0 752.0 754.3 759.2 760.7</td>
<td>751.8 757.7 762.3 766.9 770.9</td>
</tr>
</tbody>
</table>

Further, DSC traces were analyzed to gain more insight of the kinetics of crystallization. The kinetic parameters have been evaluated using four theoretical models. The activation energy for crystallization, E_c is determined using the Kissinger relation:

$$\ln(\alpha/\beta^2) = \frac{E_c}{RT_p} + \text{constant} \quad \ldots(1)$$

where α is the heating rate and R is the gas constant. Fig. 2 shows the plot of $\ln(\alpha/\beta^2)$ against $1000/T_p$ for both the compositions. Both curves are linear. From the slopes of the straight lines, the activation energies are evaluated.

Further, the Ozawa equation:

$$\ln(\alpha) = \frac{E_c}{RT_c} + \text{constant} \quad \ldots(2)$$

is used to compute E_c. The plots of $\ln(\alpha)$ against $1000/T_c$ are straight lines as shown in Fig.3. Again the slopes

![Kissinger plots for Niₓ-Ti₁₋ₓ glasses](image)
Table 2: Activation energy of crystallization calculated with different models

<table>
<thead>
<tr>
<th>System</th>
<th>Activation energy (kJ/mole)</th>
<th>Kissing</th>
<th>Ozawa</th>
<th>Matusita</th>
<th>Gao-Wang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni${15}$Ti${65}$</td>
<td>Eq.</td>
<td>348±5</td>
<td>345±7</td>
<td>377±10</td>
<td>355±8</td>
</tr>
<tr>
<td>Ni${40}$Ti${60}$</td>
<td>Eq.</td>
<td>380±5</td>
<td>414±7</td>
<td>385±10</td>
<td>393±8</td>
</tr>
</tbody>
</table>

The values of E_c for Ni$_{35}$Ti$_{65}$ and Ni$_{40}$Ti$_{60}$ glasses computed from above mentioned four models are reported in Table 2. It can be noted from the table that the value of E_c is higher for Ni$_{35}$Ti$_{65}$. The values calculated from different models differ slightly from each other. The difference in E_c values may be attributed to basic assumptions lying in different theories. Further from the variation of ln(1-X) with lnT at constant temperature the Avrami exponent (n) has been calculated (Figure has not been shown). The Avrami exponent in Ni$_{35}$Ti$_{65}$ is found to be 2 indicating one-dimensional growth, with surface crystallization. In contrast to Ni$_{35}$Ti$_{65}$, the value of Avrami exponent in Ni$_{40}$Ti$_{60}$ glass indicates three-dimensional growth along with bulk crystallization. The difference in the value of Avrami constant in both the glasses may also be assured from the DSC traces. It is clear from the Fig 1,
that the crystallization peak is relatively much sharper in Ni$_{40}$Ti$_{60}$ glass as compared to that of Ni$_{35}$Ti$_{65}$ glass.

To obtain more information about morphology of growth and Avrami exponent the following relations from Gao-Wang model have been used:

\[K = K_0 \exp(-E/RT), \]
\[K_p = a E_p R T^{p-1}, \]
\[(dX/dt)_p = 0.37 n K_p, \]

where \(n \) is Avrami exponent, \(K_p \) the reaction rate factor, \(K_0 \) the frequency factor and other symbols have their usual meanings. The kinetic parameters, rate constant \((K_p) \), frequency factor \((K_0) \) together with \(n \) obtained from Gao-Wang relations are reported in Table 3. Table 3 also contains the values of Avrami exponent obtained from Matusita equation. The average value of Avrami exponent calculated from Gao-Wang equation in both the glasses agree well with values obtained from Matusita equation.

4 Crystallization Kinetics of Irradiated Specimens.

The DSC curves of both the glasses irradiated at different fluences at the heating rate of 20K/min are shown in Figs 7 and 8 respectively.

The DSC thermograms of virgin glasses are also plotted in the respective figures. No substantial change is observed in DSC thermograms after high energy irradiation.

Table - 3 The parameters of crystallization of Ni-Ti glasses

<table>
<thead>
<tr>
<th>System</th>
<th>Heating rate(K/min)</th>
<th>(K_0) (sec$^{-1}$)</th>
<th>(K_p) (sec$^{-1}$)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni${35}$Ti${65}$</td>
<td>5</td>
<td>0.0097</td>
<td>4.07x1027</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0109</td>
<td>4.03x1027</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0155</td>
<td>4.61x1027</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0229</td>
<td>3.79x1027</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.0302</td>
<td>3.18x1027</td>
<td>1.57</td>
</tr>
<tr>
<td>Ni${40}$Ti${60}$</td>
<td>5</td>
<td>0.0037</td>
<td>1.53x1027</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0057</td>
<td>1.79x1027</td>
<td>4.09</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0079</td>
<td>1.97x1027</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0112</td>
<td>2.01x1027</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.0166</td>
<td>2.19x1027</td>
<td>4.95</td>
</tr>
</tbody>
</table>
system. During thermal treatment, these defects are annealed out well before the temperature necessary for crystallization. Hence, no effect of irradiation is observed.

5 Conclusion
We may conclude from the above study that the thermal stability of Ni₄₀Ti₆₀ is more than the Ni₃₅Ti₆₅. The high energy heavy ion irradiation does not influence the crystallization kinetics of NiₓTi₁₀₀₋ₓ (ₓ = 35, 40) glasses.

6 Acknowledgement
Authors are thankful to Prof G K Mehta, Nuclear Science Centre (NSC), New Delhi for granting permission and providing necessary facilities at the centre.

References
3 Kissinger H E, J Res NBS, 57 (1956) 217.